Your browser doesn't support javascript.
loading
Synthesis and characterization of a uranyl(VI) complex with 2,6-pyridine-bis(methylaminophenolato) and its ligand-centred aerobic oxidation mechanism to a diimino derivative.
Takeyama, Tomoyuki; Iwatsuki, Satoshi; Tsushima, Satoru; Takao, Koichiro.
Afiliação
  • Takeyama T; Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan. takeyama.t.ab@m.titech.ac.jp.
  • Iwatsuki S; Department of Chemistry, Konan University, Higashinada-ku, 658-8501 Kobe, Japan.
  • Tsushima S; Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany.
  • Takao K; Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan.
Dalton Trans ; 51(17): 6576-6586, 2022 May 03.
Article em En | MEDLINE | ID: mdl-35420620
ABSTRACT
A uranyl(VI) complex with 2,6-bis(3,5-di-tert-butyl-o-phenolateaminomethyl)pyridine (UO2(tBu-pdaop), 1) was synthesized and thoroughly characterized by 1H NMR, IR, elemental analysis, and single-crystal XRD. Right after the dissolution of complex 1 in pyridine or DMSO, the solution was pale red, whereas it gradually turned to dark purple under an ambient atmosphere. 1H NMR spectra at the initial and final states suggested that both of the two aminomethyl groups in 1 were converted to azomethine ones through aerobic oxidation. Indeed, a uranyl(VI) complex with 2,6-bis(3,5-di-tert-butyl-o-phenolateiminomethyl)pyridine (UO2(tBu-pdiop), 2) was obtained from the concentrated solution once the reaction was completed, and was characterized by IR, and single-crystal XRD. Kinetic analyses as well as mechanistic studies based on quantum chemical calculations suggested that hydrogen atom transfer from one of the amino groups in complex 1 to nearby O2 initiates the stepwise oxidation processes to finally afford 2. The present findings demonstrate the novel reactivity of a uranyl(VI) complex, and provide new insights to construct thermally-driven molecular conversion systems by a UO22+ complex catalyst.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article