Your browser doesn't support javascript.
loading
The use of sample positioning to control defect creation by oxygen plasma in isotopically labelled bilayer graphene membranes.
Guerra, Valentino L P; Vales, Václav; Miksátko, Jirí; Plsek, Jan; Drogowska-Horná, Karolina Anna; Volochanskyi, Oleksandr; Kalbác, Martin.
Afiliação
  • Guerra VLP; Department of Low-dimensional Systems, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic v.v.i., Dolejskova 3 18223 Prague 8 Czech Republic martin.kalbac@jh-inst.cas.cz.
  • Vales V; Department of Low-dimensional Systems, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic v.v.i., Dolejskova 3 18223 Prague 8 Czech Republic martin.kalbac@jh-inst.cas.cz.
  • Miksátko J; Department of Low-dimensional Systems, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic v.v.i., Dolejskova 3 18223 Prague 8 Czech Republic martin.kalbac@jh-inst.cas.cz.
  • Plsek J; Department of Low-dimensional Systems, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic v.v.i., Dolejskova 3 18223 Prague 8 Czech Republic martin.kalbac@jh-inst.cas.cz.
  • Drogowska-Horná KA; Department of Low-dimensional Systems, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic v.v.i., Dolejskova 3 18223 Prague 8 Czech Republic martin.kalbac@jh-inst.cas.cz.
  • Volochanskyi O; Department of Low-dimensional Systems, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic v.v.i., Dolejskova 3 18223 Prague 8 Czech Republic martin.kalbac@jh-inst.cas.cz.
  • Kalbác M; Department of Low-dimensional Systems, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic v.v.i., Dolejskova 3 18223 Prague 8 Czech Republic martin.kalbac@jh-inst.cas.cz.
RSC Adv ; 11(17): 10316-10322, 2021 Mar 05.
Article em En | MEDLINE | ID: mdl-35423537
ABSTRACT
Monolayer and isotopically labelled bilayer graphene membranes were prepared on grids for transmission electron microscopy (TEM). In order to create defects in the graphene layers in a controlled way, we studied the sensitivity of the individual graphene layers to the oxygen plasma treatment. We tested samples with different configurations by varying the order of the transfer of layers and changing the orientation of the samples with respect to the plasma chamber. Using Raman spectroscopy, HRTEM and X-ray photoelectron spectroscopy, we demonstrated defect formation and determined the quantity and chemical composition of the defects. By keeping the sample structure and the setup of the experiment unchanged, the significant role of the sample orientation with respect to the chamber was demonstrated. The effect was accounted for by the variation of the accessibility of the sample surface for the reactive species. Therefore, this effect can be used to control the degree of damage in each layer, resulting in differing numbers of defects present on each side of the sample.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article