Your browser doesn't support javascript.
loading
Deoxynivalenol exposure inhibits biosynthesis of milk fat and protein by impairing tight junction in bovine mammary epithelial cells.
Zhao, Xinzhe; Sun, Peihao; Liu, Mingxiao; Liu, Shuanghang; Huo, Lijun; Ding, Zhiming; Liu, Ming; Wang, Shuai; Lv, Ce; Wu, Hanxiao; Yang, Liguo; Liang, Aixin.
Afiliação
  • Zhao X; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
  • Sun P; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
  • Liu M; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
  • Liu S; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
  • Huo L; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong A
  • Ding Z; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
  • Liu M; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
  • Wang S; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
  • Lv C; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
  • Wu H; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
  • Yang L; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong A
  • Liang A; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong A
Ecotoxicol Environ Saf ; 237: 113504, 2022 Jun 01.
Article em En | MEDLINE | ID: mdl-35447471
Deoxynivalenol (DON) is one of the most common feed contaminants, and it poses a serious threat to the health of dairy cows. The existing studies of biological toxicity of DON mainly focus on the proliferation, oxidative stress, and inflammation in bovine mammary epithelial cells, while its toxicity on the biosynthesis of milk components has not been well documented. Hence, we investigated the toxic effects and the underlying mechanism of DON on the bovine mammary alveolar cells (MAC-T). Our results showed that exposure to various concentrations of DON significantly inhibited cell proliferation, induced apoptosis, and altered the cell morphology which was manifested by cell distortion and shrinkage. Moreover, the transepithelial electrical resistance (TEER) values of MAC-T cells exposed to DON were gradually decreased in a time- and concentration- dependent manner, but lactate dehydrogenase (LDH) leakage was significantly increased with the maximum increase of 2.4-fold, indicating the cell membrane and tight junctions were damaged by DON. Importantly, DON significantly reduced the synthesis of ß-casein and lipid droplets, along with the significantly decreases of phospho-mTOR, phospho-4EBP1, phospho-JAK2, and phospho-STAT5. Gene expression profiles showed that the expressions of several genes related to lipid synthesis and metabolism were changed, including acyl-CoA synthetase short-chain family member 2 (ACSS2), fatty acid binding protein 3 (FABP3), 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1), and insulin-induced gene 1 (INSIG1). GO and KEGG enrichment analyses revealed that the differentially expressed genes (DEGs) were significantly enriched in ribosome, glutathione metabolism, and lipid biosynthetic process, which play important roles in the toxicological process induced by DON. Taken together, DON affects the proliferation and functional differentiation of MAC-T cells, which might be related to the cell junction disruption and morphological alteration. Our data provide new insights into functional differentiation and transcriptomic alterations of MAC-T cells after DON exposure, which contributes to a comprehensive understanding of DON-induced toxicity mechanism.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Junções Íntimas / Leite Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Junções Íntimas / Leite Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article