Your browser doesn't support javascript.
loading
Strain-Free Layered Semiconductors for 2D Transistors with On-State Current Density Exceeding 1.3 mA µm-1.
Tan, Congwei; Jiang, Jianfeng; Wang, Jingyue; Yu, Mengshi; Tu, Teng; Gao, Xiaoyin; Tang, Junchuan; Zhang, Congcong; Zhang, Yichi; Zhou, Xuehan; Zheng, Liming; Qiu, Chenguang; Peng, Hailin.
Afiliação
  • Tan C; Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Jiang J; Key Laboratory for the Physics and Chemistry of Nanodevices and School of Electronics, Peking University, Beijing 100871, China.
  • Wang J; Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Yu M; Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Tu T; Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Gao X; Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Tang J; Division of G-Device Technology, Beijing Graphene Institute, Beijing 100095, China.
  • Zhang C; Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Zhang Y; Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Zhou X; Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Zheng L; Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Qiu C; Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Peng H; Division of G-Device Technology, Beijing Graphene Institute, Beijing 100095, China.
Nano Lett ; 22(9): 3770-3776, 2022 May 11.
Article em En | MEDLINE | ID: mdl-35467885
ABSTRACT
High-mobility and air-stable two-dimensional (2D) Bi2O2Se semiconductor holds promise as an alternative fast channel material for next-generation transistors. However, one of the key challenges remaining in 2D Bi2O2Se is to prepare high-quality crystals to fabricate the high-performance transistors with a high on-state current density. Here, we present the free-standing growth of strain-free 2D Bi2O2Se crystals. An ultrahigh Hall mobility of 160 000 cm2 V-1 s-1 is measured in strain-free Bi2O2Se crystals at 2 K, which enables the observation of Shubnikov-de Haas quantum oscillations and shows substantially higher (>4 times) mobility over previous in-plane 2D crystals. The fabricated 2D transistors feature an on-off current ratio of ∼106 and a record-high on-state current density of ∼1.33 mA µm-1, which is comparable to that of commercial Si and Ge n-type field-effect transistors (FETs) for similar channel length. Strain-free 2D Bi2O2Se provides a promising material platform for studying novel quantum phenomena and exploration of high-performance low-power electronics.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article