Your browser doesn't support javascript.
loading
Superhydrophobic SLA 3D printed materials modified with nanoparticles biomimicking the hierarchical structure of a rice leaf.
Barraza, Belén; Olate-Moya, Felipe; Montecinos, Gino; Ortega, Jaime H; Rosenkranz, Andreas; Tamburrino, Aldo; Palza, Humberto.
Afiliação
  • Barraza B; Matemáticas, Universidad de ChileDepartamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y, Santiago, Chile.
  • Olate-Moya F; Núcleo Milenio en Metamateriales Mecánicos Suaves e Inteligentes (Millennium Nucleus on Smart Soft Mechanical Metamaterials).
  • Montecinos G; Advanced Mining Technology Center, Universidad de Chile, Santiago, Chile.
  • Ortega JH; Matemáticas, Universidad de ChileDepartamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y, Santiago, Chile.
  • Rosenkranz A; Núcleo Milenio en Metamateriales Mecánicos Suaves e Inteligentes (Millennium Nucleus on Smart Soft Mechanical Metamaterials).
  • Tamburrino A; Departamento de Ingeniería Matemática, Universidad de la Frontera, Temuco, Chile.
  • Palza H; Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile.
Sci Technol Adv Mater ; 23(1): 300-321, 2022.
Article em En | MEDLINE | ID: mdl-35557509
ABSTRACT
The rice leaf, combining the surface properties of lotus leaves and shark skin, presents outstanding superhydrophobic properties motivating its biomimesis. We created a novel biomimetic rice-leaf superhydrophobic surface by a three-level hierarchical structure, using for a first time stereolithographic (SLA) 3D printed channels (100µm width) with an intrinsic roughness from the printing filaments (10µm), and coated with TiO2 nanoparticles (22 and 100nm). This structure presents a maximum advancing contact angle of 165° characterized by lower both anisotropy and hysteresis contact angles than other 3D printed surfaces, due to the presence of air pockets at the surface/water interface (Cassie-Baxter state). Dynamic water-drop tests show that the biomimetic surface presents self-cleaning, which is reduced under UV-A irradiation. The biomimetic surface further renders an increased floatability to 3D printed objects meaning a drag-reduction due to reduced water/solid contact area. Numerical simulations of a channel with a biomimetic wall confirm that the presence of air is essential to understand our results since it increases the average velocity and decreases the friction factor due to the presence of a wall-slip velocity. Our findings show that SLA 3D printing is an appropriate approach to develop biomimetic superhydrophobic surfaces for future applications in anti-fouling and drag-reduction devices.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article