Your browser doesn't support javascript.
loading
Concurrent and Mechanochemical Activation of Two Distinct and Latent Fluorophores via Retro-Diels-Alder Reaction of an Anthracene-Aminomaleimide Adduct.
Wang, Xiaoying; Cao, Yifeng; Peng, Yanling; Wang, Lewen; Hou, Wangmeng; Zhou, Yecheng; Shi, Yi; Huang, Huahua; Chen, Yongming; Li, Yuanchao.
Afiliação
  • Wang X; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun
  • Cao Y; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun
  • Peng Y; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun
  • Wang L; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun
  • Hou W; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun
  • Zhou Y; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun
  • Shi Y; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun
  • Huang H; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun
  • Chen Y; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun
  • Li Y; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun
ACS Macro Lett ; 11(3): 310-316, 2022 03 15.
Article em En | MEDLINE | ID: mdl-35575364
ABSTRACT
Generally, a typical mechanochromophore produces color change through chemical transformation into one or two identical new chromophores/fluorophores under applied mechanical force. Herein, we introduce a novel mechanophore based on an anthracene-aminomaleimide Diels-Alder (DA) adduct featuring two distinct and latent fluorophores. This nonfluorescent mechanophore undergoes retro-DA reaction upon mechanochemical activation in solution and the solid state, generating the respective anthracene and aminomaleimide fragments simultaneously, both of which are highly emissive with different fluorescent colors. In addition, the aminomaleimide fluorophore exhibits sensitive fluorescence on-off response to protic solvents or polar solvents, which enables dual-color mechanochromism from this single mechanophore.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Corantes Fluorescentes / Antracenos Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Corantes Fluorescentes / Antracenos Idioma: En Ano de publicação: 2022 Tipo de documento: Article