Your browser doesn't support javascript.
loading
Weather Classification by Utilizing Synthetic Data.
Minhas, Saad; Khanam, Zeba; Ehsan, Shoaib; McDonald-Maier, Klaus; Hernández-Sabaté, Aura.
Afiliação
  • Minhas S; School of Computer Science & Electrical Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
  • Khanam Z; School of Computer Science & Electrical Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
  • Ehsan S; School of Computer Science & Electrical Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
  • McDonald-Maier K; School of Computer Science & Electrical Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
  • Hernández-Sabaté A; Computer Vision Centre, Universitat Autònoma de Barcelona, Plaça Cívica, 08193 Bellaterra, Spain.
Sensors (Basel) ; 22(9)2022 Apr 21.
Article em En | MEDLINE | ID: mdl-35590881
Weather prediction from real-world images can be termed a complex task when targeting classification using neural networks. Moreover, the number of images throughout the available datasets can contain a huge amount of variance when comparing locations with the weather those images are representing. In this article, the capabilities of a custom built driver simulator are explored specifically to simulate a wide range of weather conditions. Moreover, the performance of a new synthetic dataset generated by the above simulator is also assessed. The results indicate that the use of synthetic datasets in conjunction with real-world datasets can increase the training efficiency of the CNNs by as much as 74%. The article paves a way forward to tackle the persistent problem of bias in vision-based datasets.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tempo (Meteorologia) / Redes Neurais de Computação Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tempo (Meteorologia) / Redes Neurais de Computação Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article