Your browser doesn't support javascript.
loading
Visualizing On-Surface Decomposition Chemistry at the Nanoscale Using Tip-Enhanced Raman Spectroscopy.
Cai, Zhen-Feng; Käser, Timon; Kumar, Naresh; Zenobi, Renato.
Afiliação
  • Cai ZF; Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland.
  • Käser T; Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland.
  • Kumar N; Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland.
  • Zenobi R; Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland.
J Phys Chem Lett ; 13(22): 4864-4870, 2022 Jun 09.
Article em En | MEDLINE | ID: mdl-35617121
ABSTRACT
Chemical imaging of molecular decomposition processes at solid-liquid interfaces is a long-standing problem in achieving mechanistic understanding. Conventional analytical tools fail to meet this challenge due to the lack of required chemical sensitivity and specificity at the nanometer scale. In this work, we demonstrate that high-resolution hyperspectral tip-enhanced Raman spectroscopy (TERS) imaging can be a powerful analytical tool for studying on-surface decomposition chemistry at the nanoscale. Specifically, we present a TERS-based hyperspectral approach to visualize the on-surface decomposition process of a pyridine-4-thiol self-assembled monolayer on atomically flat Au(111) surfaces under ambient conditions. Reactive intermediates involved in the degradation process are spectroscopically detected with 5 nm spatial resolution. With supporting density functional theory simulations, a key species could be assigned to the disulfide reaction intermediate. This work opens a new application area for studying on-surface decomposition chemistry and related dynamics quantitatively at solid-liquid interfaces with nanometer spatial resolution.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article