Pressure- and 3D-Derived Coronary Flow Reserve with Hydrostatic Pressure Correction: Comparison with Intracoronary Doppler Measurements.
J Pers Med
; 12(5)2022 May 12.
Article
em En
| MEDLINE
| ID: mdl-35629202
Purpose: To develop a method of coronary flow reserve (CFR) calculation derived from three-dimensional (3D) coronary angiographic parameters and intracoronary pressure data during fractional flow reserve (FFR) measurement. Methods: Altogether 19 coronary arteries of 16 native and 3 stented vessels were reconstructed in 3D. The measured distal intracoronary pressures were corrected to the hydrostatic pressure based on the height differences between the levels of the vessel orifice and the sensor position. Classical fluid dynamic equations were applied to calculate the flow during the resting state and vasodilatation based on morphological data and intracoronary pressure values. 3D-derived coronary flow reserve (CFRp-3D) was defined as the ratio between the calculated hyperemic and the resting flow and was compared to the CFR values simultaneously measured by the Doppler sensor (CFRDoppler). Results: Haemodynamic calculations using the distal coronary pressures corrected for hydrostatic pressures showed a strong correlation between the individual CFRp-3D values and the CFRDoppler measurements (r = 0.89, p < 0.0001). Hydrostatic pressure correction increased the specificity of the method from 46.1% to 92.3% for predicting an abnormal CFRDoppler < 2. Conclusions: CFRp-3D calculation with hydrostatic pressure correction during FFR measurement facilitates a comprehensive hemodynamic assessment, supporting the complex evaluation of macro-and microvascular coronary artery disease.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article