Your browser doesn't support javascript.
loading
Exposure to BDE-47 and BDE-209 impaired antioxidative defense mechanisms in Brachionus plicatilis.
Sha, Jingjing; Jian, Xiaoyang; Yu, Qingyun; Wei, Miao; Li, Xiaoyu; Zhao, Ludan; Qi, Yanping.
Afiliação
  • Sha J; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, 266033, China; Key Laboratory of Ecological Prewarning and Protection of Bohai Sea, Ministry of Natural Resources, Qingdao, 266033, China.
  • Jian X; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, 266033, China; Key Laboratory of Ecological Prewarning and Protection of Bohai Sea, Ministry of Natural Resources, Qingdao, 266033, China.
  • Yu Q; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, 266033, China; Key Laboratory of Ecological Prewarning and Protection of Bohai Sea, Ministry of Natural Resources, Qingdao, 266033, China.
  • Wei M; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, 266033, China; Key Laboratory of Ecological Prewarning and Protection of Bohai Sea, Ministry of Natural Resources, Qingdao, 266033, China.
  • Li X; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, 266033, China; Key Laboratory of Ecological Prewarning and Protection of Bohai Sea, Ministry of Natural Resources, Qingdao, 266033, China.
  • Zhao L; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, 266033, China; Key Laboratory of Ecological Prewarning and Protection of Bohai Sea, Ministry of Natural Resources, Qingdao, 266033, China.
  • Qi Y; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, 266033, China; Key Laboratory of Ecological Prewarning and Protection of Bohai Sea, Ministry of Natural Resources, Qingdao, 266033, China. Electronic address: qiyanping01@foxmail.com.
Chemosphere ; 303(Pt 2): 135152, 2022 Sep.
Article em En | MEDLINE | ID: mdl-35649441
ABSTRACT
Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants (POPs) that pose serious challenges to aquatic animals and environments. Compared with BDE-47 which was one of the most toxic congeners known to date, BDE-209 is less toxic with higher abundance in biotic and abiotic samples. In this study, we have explored the effects of BDE-47 and BDE-209 at different concentrations on the radical oxygen species (ROS) levels and the antioxidant defense system of Brachionus plicatilis. Antioxidant indexes were measured, including total protein content (TSP), the activities of antioxidant enzymes, lipid peroxidation and DNA damage. The results indicated that while low concentrations of PBDEs could activate the antioxidant defense mechanisms, prolonged exposure to higher concentrations of PBDEs could impair the antioxidative capacity of B.plicatilis (P < 0.05). The overwhelming of the B.plicatilis antioxidant defense mechanism led to an accumulation of free radicals, resulting in the overactivation of lipid peroxidation and the increased frequency of DNA damage (P < 0.05). By studying the toxicity of PBDEs and the detoxification mechanism of B.plicatilis, our research has revealed useful indexes for detecting and monitoring the level of BDE-47 and BDE-209 in the future. Altogether, this study holds immense value in the field of ecotoxicology and environmental safety and will aid in the proper management of PBDEs pollution.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Rotíferos / Éteres Difenil Halogenados Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Rotíferos / Éteres Difenil Halogenados Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article