Automated, portable, and high-throughput fluorescence analyzer (APHF-analyzer) and lateral flow strip based on CRISPR/Cas13a for sensitive and visual detection of SARS-CoV-2.
Talanta
; 248: 123594, 2022 Oct 01.
Article
em En
| MEDLINE
| ID: mdl-35653961
COVID-19 has erupted and quickly swept across the globe, causing huge losses to human health and wealth. It is of great value to develop a quick, accurate, visual, and high-throughput detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we developed a biosensor based on CRISPR/Cas13a combined with recombinase polymerase amplification (RPA) to detect S and Orf1ab genes of SARS-CoV-2 within 30 min. Most important of all, we developed an automated, portable, and high-throughput fluorescence analyzer (APHF-analyzer) with a 3D-printed microfluidic chip for sensitively detecting SARS-CoV-2, which addressed aerosol contamination issue and provided a more accurate and high-throughput detection during the on-site detection process. The detection limits of S gene and Orf1ab gene were as low as 0.68 fM and 4.16 fM. Furthermore, we used the lateral flow strip to realize visualization and point of care testing (POCT) of SARS-CoV-2. Therefore, profit from the efficient amplification of RPA and the high specificity of CRISPR/Cas13a, APHF-analyzer and the lateral flow strip to simultaneous detection of S gene and Orf1ab gene would be applied as a promising tool in the field of SARS-CoV-2 detection.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
SARS-CoV-2
/
COVID-19
Tipo de estudo:
Diagnostic_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article