Your browser doesn't support javascript.
loading
Cardiac fibroblasts regulate the development of heart failure via Htra3-TGF-ß-IGFBP7 axis.
Ko, Toshiyuki; Nomura, Seitaro; Yamada, Shintaro; Fujita, Kanna; Fujita, Takanori; Satoh, Masahiro; Oka, Chio; Katoh, Manami; Ito, Masamichi; Katagiri, Mikako; Sassa, Tatsuro; Zhang, Bo; Hatsuse, Satoshi; Yamada, Takanobu; Harada, Mutsuo; Toko, Haruhiro; Amiya, Eisuke; Hatano, Masaru; Kinoshita, Osamu; Nawata, Kan; Abe, Hiroyuki; Ushiku, Tetsuo; Ono, Minoru; Ikeuchi, Masashi; Morita, Hiroyuki; Aburatani, Hiroyuki; Komuro, Issei.
Afiliação
  • Ko T; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Nomura S; Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
  • Yamada S; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. senomura-cib@umin.ac.jp.
  • Fujita K; Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan. senomura-cib@umin.ac.jp.
  • Fujita T; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Satoh M; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Oka C; Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
  • Katoh M; Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
  • Ito M; Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
  • Katagiri M; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
  • Sassa T; Laboratory of Functional Genomics and Medicine, Nara Institute of Science and Technology, Nara, Japan.
  • Zhang B; Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
  • Hatsuse S; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Yamada T; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Harada M; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Toko H; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Amiya E; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Hatano M; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Kinoshita O; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Nawata K; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Abe H; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Ushiku T; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Ono M; Department of Cardiac Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Ikeuchi M; Department of Cardiovascular Surgery, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan.
  • Morita H; Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Aburatani H; Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Komuro I; Department of Cardiac Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Nat Commun ; 13(1): 3275, 2022 06 07.
Article em En | MEDLINE | ID: mdl-35672400
ABSTRACT
Tissue fibrosis and organ dysfunction are hallmarks of age-related diseases including heart failure, but it remains elusive whether there is a common pathway to induce both events. Through single-cell RNA-seq, spatial transcriptomics, and genetic perturbation, we elucidate that high-temperature requirement A serine peptidase 3 (Htra3) is a critical regulator of cardiac fibrosis and heart failure by maintaining the identity of quiescent cardiac fibroblasts through degrading transforming growth factor-ß (TGF-ß). Pressure overload downregulates expression of Htra3 in cardiac fibroblasts and activated TGF-ß signaling, which induces not only cardiac fibrosis but also heart failure through DNA damage accumulation and secretory phenotype induction in failing cardiomyocytes. Overexpression of Htra3 in the heart inhibits TGF-ß signaling and ameliorates cardiac dysfunction after pressure overload. Htra3-regulated induction of spatio-temporal cardiac fibrosis and cardiomyocyte secretory phenotype are observed specifically in infarct regions after myocardial infarction. Integrative analyses of single-cardiomyocyte transcriptome and plasma proteome in human reveal that IGFBP7, which is a cytokine downstream of TGF-ß and secreted from failing cardiomyocytes, is the most predictable marker of advanced heart failure. These findings highlight the roles of cardiac fibroblasts in regulating cardiomyocyte homeostasis and cardiac fibrosis through the Htra3-TGF-ß-IGFBP7 pathway, which would be a therapeutic target for heart failure.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fator de Crescimento Transformador beta / Insuficiência Cardíaca Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fator de Crescimento Transformador beta / Insuficiência Cardíaca Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article