Your browser doesn't support javascript.
loading
The inhibition of autophagy by spautin boosts the anticancer activity of fingolimod in multidrug-resistant hepatocellular carcinoma.
Alhamad, Dima W; Elgendy, Sara M; Hersi, Fatema; El-Seedi, Hesham R; Omar, Hany A.
Afiliação
  • Alhamad DW; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
  • Elgendy SM; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
  • Hersi F; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.
  • El-Seedi HR; Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden; Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Kom, Egypt.
  • Omar HA; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt. Electroni
Life Sci ; 304: 120699, 2022 Sep 01.
Article em En | MEDLINE | ID: mdl-35690108
The contribution of autophagy to drug resistance has been studied in several cancers. However, there is no clear evidence about the role of autophagy in the resistance to chemotherapy in cancers, such as hepatocellular carcinoma (HCC). HCC is characterized by a poor prognosis and limited therapeutic options. Moreover, the emergence of multidrug-resistance (MDR) hinders successful treatment. Therefore, understanding how autophagy is regulated in resistant HCC is essential for sensitizing this malignancy to chemotherapy. This work demonstrated that basal and induced autophagy differ between parental and resistant Hep3B cells. In optimum growth conditions, the basal level of autophagy was low in resistant Hep3B (Hep3B-R) cells compared to the wild-type Hep3B (Hep3B-P) cells. However, in metabolic or therapeutic stress conditions, the rate of autophagy flux was much faster in the resistant cells. The work also confirmed the pro-survival function of autophagy in HCC. Besides, it demonstrated that the autophagy inhibitor, spautin, acted synergistically with fingolimod (FTY720) to promote cell death. The combination treatment resulted in superior reactive oxygen species (ROS) production and significant induction of apoptosis. In addition, spautin potentiated the effect of FTY720 against cell survival pathways like the Akt and ERK. Interestingly, the results indicated that Hep3B-R cells were more sensitive to autophagy inhibition than their parental counterparts. Collectively, this work revealed that combining spautin with chemotherapeutic agents that induce cytoprotective autophagy such as FTY720 is a promising approach to overcome MDR in HCC.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carcinoma Hepatocelular / Neoplasias Hepáticas Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carcinoma Hepatocelular / Neoplasias Hepáticas Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article