Your browser doesn't support javascript.
loading
Understanding the mechanisms behind enhanced anaerobic digestion of corn straw by humic acids.
Zhu, Rong; Zhang, Yun; Zou, Hua; Zheng, Yi; Guo, Rong-Bo; Fu, Shan-Fei.
Afiliação
  • Zhu R; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, United States. Electronic address: 7181401009@stu.jian
  • Zhang Y; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215
  • Zou H; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215
  • Zheng Y; Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, United States.
  • Guo RB; Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR Chi
  • Fu SF; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laborat
Bioresour Technol ; 359: 127454, 2022 Sep.
Article em En | MEDLINE | ID: mdl-35697261
ABSTRACT
Humic acids (HAs) are abundant on earth, yet their effects on anaerobic digestion (AD) of cellulosic substrate are not fully uncovered. The effects of HAs on AD of corn straw and the mechanisms behind were analyzed in this study. Results showed that the effects of HAs on methane yield were closely related to the total solids (TS) content. At relative high TS content of 5.0%, HAs benefited AD process by increasing 13.8% of methane yield, accelerating methane production rate by 43% and shortening lag phase time by 37.5%. Microbial community analysis indicated that HAs increased the relative abundance of syntrophic bacteria (Syntrophomonadaceae and Synergistaceae), facilitating the degradation of volatile fatty acids. HAs might act as electron shuttles to directly transfer electrons to hydrogenotrophic methanogens for CO2 reduction to CH4. This study provides a simple and efficient strategy to facilitate the AD of cellulosic substrate by HAs addition.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Reatores Biológicos / Zea mays Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Reatores Biológicos / Zea mays Idioma: En Ano de publicação: 2022 Tipo de documento: Article