Sequence tagging for biomedical extractive question answering.
Bioinformatics
; 38(15): 3794-3801, 2022 08 02.
Article
em En
| MEDLINE
| ID: mdl-35713500
MOTIVATION: Current studies in extractive question answering (EQA) have modeled the single-span extraction setting, where a single answer span is a label to predict for a given question-passage pair. This setting is natural for general domain EQA as the majority of the questions in the general domain can be answered with a single span. Following general domain EQA models, current biomedical EQA (BioEQA) models utilize the single-span extraction setting with post-processing steps. RESULTS: In this article, we investigate the question distribution across the general and biomedical domains and discover biomedical questions are more likely to require list-type answers (multiple answers) than factoid-type answers (single answer). This necessitates the models capable of producing multiple answers for a question. Based on this preliminary study, we propose a sequence tagging approach for BioEQA, which is a multi-span extraction setting. Our approach directly tackles questions with a variable number of phrases as their answer and can learn to decide the number of answers for a question from training data. Our experimental results on the BioASQ 7b and 8b list-type questions outperformed the best-performing existing models without requiring post-processing steps. AVAILABILITY AND IMPLEMENTATION: Source codes and resources are freely available for download at https://github.com/dmis-lab/SeqTagQA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Software
/
Biologia Computacional
Tipo de estudo:
Prognostic_studies
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article