Your browser doesn't support javascript.
loading
Unveiling the Synergistic Effects of Monodisperse Sea Urchin-like PdPb Alloy Nanodendrites as Stable Electrocatalysts for Ethylene Glycol and Glycerol Oxidation Reactions.
Sun, Tong; Chen, Jianyu; Lao, Xianzhuo; Zhang, Xingxue; Fu, Aiping; Wang, Wei; Guo, Peizhi.
Afiliação
  • Sun T; Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China.
  • Chen J; Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China.
  • Lao X; Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China.
  • Zhang X; Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China.
  • Fu A; College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.
  • Wang W; Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China.
  • Guo P; Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China.
Inorg Chem ; 61(26): 10220-10227, 2022 Jul 04.
Article em En | MEDLINE | ID: mdl-35729745
In recent times, the fabrication of noble metal-based catalysts with controllable morphologies has become a research hotspot. Electrocatalytic devices with excellent catalytic performance and enhanced durability for the ethylene glycol oxidation reaction (EGOR) and the glycerol oxidation reaction (GOR) are significant for commercial direct fuel cells. Herein, a series of PdPb sea urchin-like nanodendrite (ND) structures with controllable molar ratios were synthesized as EGOR and GOR electrocatalysts of high efficiency. The optimized structurally regular Pd3Pb NDs exhibit the best electrocatalytic activity and outstanding stability compared to other samples and commercial Pt/C. In addition, the integrated Pb on Pd3Pb NDs can mitigate the bond energy the intermediates generate and further boost the electrooxidation of the intermediates by supplying enough active sites without considering its intrinsic structure, which is beneficial to the enhanced EGOR and GOR activity and stability. With the assistance of electrochemical measurement, the mechanism of the enhanced alloy was further investigated. This paper presents a promising strategy to fabricate catalysts with stable structures, which will elucidate a very promising approach for developing Pd-based catalysts for further applications in fuel cells.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article