Your browser doesn't support javascript.
loading
Integrating a crop growth model and radiative transfer model to improve estimation of crop traits based on deep learning.
Chen, Qiaomin; Zheng, Bangyou; Chen, Tong; Chapman, Scott C.
Afiliação
  • Chen Q; School of Agriculture and Food Sciences, The University of Queensland, St Lucia, 4067, QLD, Australia.
  • Zheng B; CSIRO Agriculture and Food, Queensland Biosciences Precinct 306 Carmody Road, St Lucia, 4067, QLD, Australia.
  • Chen T; CSIRO Agriculture and Food, Queensland Biosciences Precinct 306 Carmody Road, St Lucia, 4067, QLD, Australia.
  • Chapman SC; School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, 4067, QLD, Australia.
J Exp Bot ; 73(19): 6558-6574, 2022 11 02.
Article em En | MEDLINE | ID: mdl-35768163
A major challenge for the estimation of crop traits (biophysical variables) from canopy reflectance is the creation of a high-quality training dataset. To address this problem, this research investigated a conceptual framework by integrating a crop growth model with a radiative transfer model to introduce biological constraints in a synthetic training dataset. In addition to the comparison of two datasets without and with biological constraints, we also investigated the effects of observation geometry, retrieval method, and wavelength range on estimation accuracy of four crop traits (leaf area index, leaf chlorophyll content, leaf dry matter, and leaf water content) of wheat. The theoretical analysis demonstrated potential advantages of adding biological constraints in synthetic training datasets as well as the capability of deep learning. Additionally, the predictive models were validated on real unmanned aerial vehicle-based multispectral images collected from wheat plots contrasting in canopy structure. The predictive model trained over a synthetic dataset with biological constraints enabled the prediction of leaf water content from using wavelengths in the visible to near infrared range based on the correlations between crop traits. Our findings presented the potential of the proposed conceptual framework in simultaneously retrieving multiple crop traits from canopy reflectance for applications in precision agriculture and plant breeding.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aprendizado Profundo Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aprendizado Profundo Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article