Your browser doesn't support javascript.
loading
Characterization of Siccibacter sp. Strain C2 a Novel Rhizobacterium that Enhances Tolerance of Barley to Salt Stress.
Sayahi, Naima; Djemal, Rania; Ben Merdes, Khaireddine; Saidii, Mohamed Najib; Yengui, Mariem; Gdoura, Radhouan; Ebel, Chantal; Aydi, Samir; Mechichi, Tahar; Hanin, Moez.
Afiliação
  • Sayahi N; Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology of Sfax, University of Sfax, BP "1175", 3038, Sfax, Tunisia.
  • Djemal R; Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology of Sfax, University of Sfax, BP "1175", 3038, Sfax, Tunisia.
  • Ben Merdes K; Laboratory of Biodiversity and Valorization of Bioresources in Arid Zones (LR18ES36), Faculty of Sciences, University of Gabes, 6072, Zrig, Gabes, Tunisia.
  • Saidii MN; Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP "1177", 3018, Sfax, Tunisia.
  • Yengui M; Laboratory of Toxicology and Environmental Health LR11ES06, Faculty of Sciences, University of Sfax, Sfax, Tunisia.
  • Gdoura R; Laboratory of Toxicology and Environmental Health LR11ES06, Faculty of Sciences, University of Sfax, Sfax, Tunisia.
  • Ebel C; Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology of Sfax, University of Sfax, BP "1175", 3038, Sfax, Tunisia.
  • Aydi S; Laboratory of Biodiversity and Valorization of Bioresources in Arid Zones (LR18ES36), Faculty of Sciences, University of Gabes, 6072, Zrig, Gabes, Tunisia.
  • Mechichi T; Laboratoire de Biochimie et de Génie Enzymatique des lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia. tahar.mechichi@enis.rnu.tn.
  • Hanin M; Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology of Sfax, University of Sfax, BP "1175", 3038, Sfax, Tunisia. moez.hanin@isbs.usf.tn.
Curr Microbiol ; 79(8): 239, 2022 Jul 06.
Article em En | MEDLINE | ID: mdl-35794407
Plant growth promoting rhizobacteria (PGPR) arouse an increasing interest as an eco-friendly solution for improving crop tolerance to environmental stresses. In this study, we report the characterization of a novel halotolerant PGPR strain (named C2) identified in a screen of rhizospheric bacterial isolates from southeast of Tunisia. Phylogenetic analysis showed that strain C2 is most likely affiliated to the genus Siccibacter with Siccibacter turicensis as the closest species (98.19%). This strain was able to perform phosphate solubilization and production of indole acetic acid (IAA), siderophores, hydrogen cyanide (HCN), as well as different hydrolytic enzymes (proteases, amylases, cellulases, and lipases). The potential of strain C2 in enhancing salt stress tolerance of Hordeum vulgare was also investigated. Our greenhouse inoculation assays showed that strain C2 promotes barley growth in the presence of 400 mM NaCl by increasing biomass, root length, and chlorophyll contents. It has a positive effect on the photosynthetic efficiency, concomitantly with lower intercellular CO2 contents, compared to non-inoculated plants. Moreover, barley inoculation with strain C2 under salt stress, resulted in higher accumulation of proline and soluble sugars and alleviate the oxidative stress by decreasing hydrogen peroxide and malondialdehyde contents. Remarkably, this positive effect corroborates with a significant activation in the expression of a subset of barley stress responsive genes, including HVA1, HvDREB1, HvWRKY38 and HvP5CS. In summary, Siccibacter sp. strain C2 is able to enhance barley salt stress tolerance and should be leveraged in developing sustainable practices for cereal crop production.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hordeum Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hordeum Idioma: En Ano de publicação: 2022 Tipo de documento: Article