SIRT6 regulates obesity-induced oxidative stress via ENDOG/SOD2 signaling in the heart.
Cell Biol Toxicol
; 39(4): 1489-1507, 2023 08.
Article
em En
| MEDLINE
| ID: mdl-35798905
The sirtuin 6 (SIRT6) participates in regulating glucose and lipid homeostasis. However, the function of SIRT6 in the process of cardiac pathogenesis caused by obesity-associated lipotoxicity remains to be unveiled. This study was designed to elucidate the role of SIRT6 in the pathogenesis of cardiac injury due to nutrition overload-induced obesity and explore the downstream signaling pathways affecting oxidative stress in the heart. In this study, we used Sirt6 cardiac-specific knockout murine models treated with a high-fat diet (HFD) feeding to explore the function and mechanism of SIRT6 in the heart tissue during HFD-induced obesity. We also took advantage of neonatal cardiomyocytes to study the role and downstream molecules of SIRT6 during HFD-induced injury in vitro, in which intracellular oxidative stress and mitochondrial content were assessed. We observed that during HFD-induced obesity, Sirt6 loss-of-function aggravated cardiac injury including left ventricular hypertrophy and lipid accumulation. Our results evidenced that upon increased fatty acid uptake, SIRT6 positively regulated the expression of endonuclease G (ENDOG), which is a mitochondrial-resident molecule that plays an important role in mitochondrial biogenesis and redox homeostasis. Our results also showed that SIRT6 positively regulated superoxide dismutase 2 (SOD2) expression post-transcriptionally via ENDOG. Our study gives a new sight into SIRT6 beneficial role in mitochondrial biogenesis of cardiomyocytes. Our data also show that SIRT6 is required to reduce intracellular oxidative stress in the heart triggered by high-fat diet-induced obesity, involving the control of ENDOG/SOD2.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Estresse Oxidativo
/
Sirtuínas
Limite:
Animals
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article