Your browser doesn't support javascript.
loading
Epigenetic and Transcriptomic Programming of HSC Quiescence Signaling in Large for Gestational Age Neonates.
Pelletier, Alexandre; Carrier, Arnaud; Zhao, Yongmei; Canouil, Mickaël; Derhourhi, Mehdi; Durand, Emmanuelle; Berberian-Ferrato, Lionel; Greally, John; Hughes, Francine; Froguel, Philippe; Bonnefond, Amélie; Delahaye, Fabien.
Afiliação
  • Pelletier A; Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, 59000 Lille, France.
  • Carrier A; Lille University Hospital, University of Lille, 59000 Lille, France.
  • Zhao Y; Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, 59000 Lille, France.
  • Canouil M; Lille University Hospital, University of Lille, 59000 Lille, France.
  • Derhourhi M; Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.
  • Durand E; Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, 59000 Lille, France.
  • Berberian-Ferrato L; Lille University Hospital, University of Lille, 59000 Lille, France.
  • Greally J; Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, 59000 Lille, France.
  • Hughes F; Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, 59000 Lille, France.
  • Froguel P; Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, 59000 Lille, France.
  • Bonnefond A; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Price Building, Room 322, Bronx, NY 10461, USA.
  • Delahaye F; Obstetrics & Gynecology and Women's Health, Division of Maternal-Fetal Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article em En | MEDLINE | ID: mdl-35806330
Excessive fetal growth is associated with DNA methylation alterations in human hematopoietic stem and progenitor cells (HSPC), but their functional impact remains elusive. We implemented an integrative analysis combining single-cell epigenomics, single-cell transcriptomics, and in vitro analyses to functionally link DNA methylation changes to putative alterations of HSPC functions. We showed in hematopoietic stem cells (HSC) from large for gestational age neonates that both DNA hypermethylation and chromatin rearrangements target a specific network of transcription factors known to sustain stem cell quiescence. In parallel, we found a decreased expression of key genes regulating HSC differentiation including EGR1, KLF2, SOCS3, and JUNB. Our functional analyses showed that this epigenetic programming was associated with a decreased ability for HSCs to remain quiescent. Taken together, our multimodal approach using single-cell (epi)genomics showed that human fetal overgrowth affects hematopoietic stem cells' quiescence signaling via epigenetic programming.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Gestacional / Transcriptoma Limite: Female / Humans / Newborn / Pregnancy Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Gestacional / Transcriptoma Limite: Female / Humans / Newborn / Pregnancy Idioma: En Ano de publicação: 2022 Tipo de documento: Article