Your browser doesn't support javascript.
loading
Neuronal Alterations in Secondary Thalamic Degeneration Due to Cerebral Infarction: A 11C-Flumazenil Positron Emission Tomography Study.
Yamauchi, Hiroshi; Kagawa, Shinya; Kusano, Kuninori; Ito, Miki; Okuyama, Chio.
Afiliação
  • Yamauchi H; Department of Psychiatry, Graduate School of Medicine, Kyoto University, Japan (H.Y.).
  • Kagawa S; Division of PET Imaging, Shiga Medical Centre Research Institute, Moriyama, Japan (S.K., K.K., M.I., C.O.).
  • Kusano K; Division of PET Imaging, Shiga Medical Centre Research Institute, Moriyama, Japan (S.K., K.K., M.I., C.O.).
  • Ito M; Division of PET Imaging, Shiga Medical Centre Research Institute, Moriyama, Japan (S.K., K.K., M.I., C.O.).
  • Okuyama C; Division of PET Imaging, Shiga Medical Centre Research Institute, Moriyama, Japan (S.K., K.K., M.I., C.O.).
Stroke ; 53(10): 3153-3163, 2022 10.
Article em En | MEDLINE | ID: mdl-35862203
BACKGROUND: Studies using animal experiments have shown secondary neuronal degeneration in the thalamus after cerebral infarction. Neuroimaging studies in humans have revealed changes in imaging parameters in the thalamus, remote to the infarction. However, few studies have directly demonstrated neuronal changes in the thalamus in vivo. The purpose of this study was to determine whether secondary thalamic neuronal damage may manifest as a decrease in central benzodiazepine receptors in patients with cerebral infarction and internal carotid artery or middle cerebral artery disease. METHODS: We retrospectively analyzed the data of 140 patients with unilateral cerebral infarction ipsilateral to internal carotid artery or middle cerebral artery disease. All patients had quantitative measurements of 11C-flumazenil binding potential (FMZ-BP), cerebral blood flow, and cerebral metabolic rate of oxygen using positron emission tomography in the chronic stage. Region of interest analysis was performed using NeuroFlexer-an automated region of interest analysis software using NEUROSTAT. RESULTS: In the thalamus ipsilateral to the infarcts, the values of FMZ-BP, cerebral blood flow, and cerebral metabolic rate of oxygen were significantly lower than those in the contralateral thalamus. Significant correlations were found between the ipsilateral-to-contralateral ratio of FMZ-BP and the ipsilateral-to-contralateral ratio of cerebral blood flow or cerebral metabolic rate of oxygen in the thalamus. Patients with corona radiata infarcts and striatocapsular infarcts had significantly decreased ipsilateral-to-contralateral FMZ-BP ratio in the thalamus compared with those without. The ipsilateral-to-contralateral ratio of FMZ-BP in the thalamus was significantly correlated with the ipsilateral-to-contralateral cerebral metabolic rate of oxygen ratio in the frontal cortex and showed a significant negative correlation with the number of perseverative errors on the Wisconsin Card Sorting Test. CONCLUSIONS: Secondary thalamic neuronal damage may manifest as a decrease in central benzodiazepine receptors in patients with cerebral infarction and internal carotid artery or middle cerebral artery disease, which may be associated with frontal lobe dysfunction.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças Arteriais Cerebrais / Flumazenil Tipo de estudo: Observational_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças Arteriais Cerebrais / Flumazenil Tipo de estudo: Observational_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article