Your browser doesn't support javascript.
loading
The Transcription Factors TaTDRL and TaMYB103 Synergistically Activate the Expression of TAA1a in Wheat, Which Positively Regulates the Development of Microspore in Arabidopsis.
Wu, Baolin; Xia, Yu; Zhang, Gaisheng; Wang, Junwei; Ma, Shoucai; Song, Yulong; Yang, Zhiquan; Dennis, Elizabeth S; Niu, Na.
Afiliação
  • Wu B; Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A&F University, Yangling 712100, China.
  • Xia Y; Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A&F University, Yangling 712100, China.
  • Zhang G; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Wang J; Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A&F University, Yangling 712100, China.
  • Ma S; Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A&F University, Yangling 712100, China.
  • Song Y; Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A&F University, Yangling 712100, China.
  • Yang Z; Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A&F University, Yangling 712100, China.
  • Dennis ES; Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A&F University, Yangling 712100, China.
  • Niu N; Agriculture and Food, Commonwealth Scientifc Industrial Research Organisation, Canberra, ACT 2601, Australia.
Int J Mol Sci ; 23(14)2022 Jul 20.
Article em En | MEDLINE | ID: mdl-35887343
ABSTRACT
Pollen fertility plays an important role in the application of heterosis in wheat (Triticum aestivum L.). However, the key genes and mechanisms underlying pollen abortion in K-type male sterility remain unclear. TAA1a is an essential gene for pollen development in wheat. Here, we explored the mechanism involved in its transcriptional regulation during pollen development, focusing on a 1315-bp promoter region. Several cis-acting elements were identified in the TAA1a promoter, including binding motifs for Arabidopsis thaliana AtAMS and AtMYB103 (CANNTG and CCAACC, respectively). Evolutionary analysis indicated that TaTDRL and TaMYB103 were the T. aestivum homologs of AtAMS and AtMYB103, respectively, and encoded nucleus-localized transcription factors containing 557 and 352 amino acids, respectively. TaTDRL and TaMYB103 were specifically expressed in wheat anthers, and their expression levels were highest in the early uninucleate stage; this expression pattern was consistent with that of TAA1a. Meanwhile, we found that TaTDRL and TaMYB03 directly interacted, as evidenced by yeast two-hybrid and bimolecular fluorescence complementation assays, while yeast one-hybrid and dual-luciferase assays revealed that both TaTDRL and TaMYB103 could bind the TAA1a promoter and synergistically increase its transcriptional activity. Furthermore, TaTDRL-EAR and TaMYB103-EAR transgenic Arabidopsis plants displayed abnormal microspore morphology, reduced pollen viability, and lowered seed setting rates. Additionally, the expression of AtMS2, a TAA1a homolog, was significantly lower in the two repressor lines than in the corresponding overexpression lines or WT plants. In summary, we identified a potential transcriptional regulatory mechanism associated with wheat pollen development.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arabidopsis Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arabidopsis Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article