Your browser doesn't support javascript.
loading
Numerical Study on the Cavitation Characteristics of Micro Automotive Electronic Pumps under Thermodynamic Effect.
Wu, Kaipeng; Ali, Asad; Feng, Changhong; Si, Qiaorui; Chen, Qian; Shen, Chunhao.
Afiliação
  • Wu K; Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China.
  • Ali A; Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China.
  • Feng C; Feilong Auto Components Co., Ltd., Nanyang 474500, China.
  • Si Q; Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China.
  • Chen Q; School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China.
  • Shen C; Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China.
Micromachines (Basel) ; 13(7)2022 Jul 01.
Article em En | MEDLINE | ID: mdl-35888880
ABSTRACT
In order to study the influence of thermodynamic effects on the cavitation performance of hydromechanics, the Singhal cavitation model was modified considering the influence of the thermo-dynamic effects, and the modified cavitation model was written into CFX using the CEL language. Numerical simulation of the cavitation full flow field at different temperatures (25 °C, 50 °C and 70 °C) was carried out with the automotive electronic water pump as the research object. The results show that the variation trend of the external characteristic simulation and experimental values is the same at all flow rates, and the calculation accuracy meets the subsequent cavitation demand. With the increase in temperature, the low-pressure area inside the automotive electronic pump's impeller decreases. NPSHr decreases and the cavitation resistance is enhanced. During the process of no cavitation to cavitation, the maximum pressure pulsation amplitude in the impeller channel gradually increases. The generation and collapse of cavitations cause the change of pressure pulsation in the internal flow field, causing pump vibration.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article