Your browser doesn't support javascript.
loading
Electrochemical Synthesis of Reduced Graphene Oxide/Gold Nanoparticles in a Single Step for Carbaryl Detection in Water.
Albalawi, Ibtihaj; Alatawi, Hanan; Alsefri, Samia; Moore, Eric.
Afiliação
  • Albalawi I; Sensing and Separation Group, School of Chemistry, University College Cork, T12 YN60 Cork, Ireland.
  • Alatawi H; Sensing and Separation Group, School of Chemistry, University College Cork, T12 YN60 Cork, Ireland.
  • Alsefri S; Sensing and Separation Group, School of Chemistry, University College Cork, T12 YN60 Cork, Ireland.
  • Moore E; Sensing and Separation Group, School of Chemistry, University College Cork, T12 YN60 Cork, Ireland.
Sensors (Basel) ; 22(14)2022 Jul 13.
Article em En | MEDLINE | ID: mdl-35890930
In this study, an in situ synthesis approach based on electrochemical reduction and ion exchange was employed to detect carbaryl species using a disposable, screen-printed carbon electrode fabricated with nanocomposite materials. Reduced graphene oxide (rGO) was used to create a larger electrode surface and more active sites. Gold nanoparticles (AuNPs,) were incorporated to accelerate electron transfer and enhance sensitivity. A cation exchange Nafion polymer was used to enable the adhesion of rGO and AuNPs to the electrode surface and speed up ion exchange. Cyclic voltammetry (CV), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), electrical impedance spectroscopy (EIS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were performed to study the electrochemical and physical properties of the modified sensor. In the presence of differential pulse voltammetry (DPV), an rGO/AuNP/Nafion-modified electrode was effectively used to measure the carbaryl concentration in river and tap water samples. The developed sensor exhibited superior electrochemical performance in terms of reproducibility, stability, efficiency and selectivity for carbaryl detection with a detection limit of 0.2 µM and a concentration range between 0.5µM and 250 µM. The proposed approach was compared to capillary electrophoresis with ultraviolet detection (CE-UV).
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas Metálicas / Grafite Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas Metálicas / Grafite Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article