Your browser doesn't support javascript.
loading
Epigenetic regulator Cfp1 safeguards male meiotic progression by regulating meiotic gene expression.
Ki, Byeong Seong; Shim, Sung Han; Park, Chanhyeok; Yoo, Hyunjin; La, Hyeonwoo; Lee, Ok-Hee; Kwon, Youngjoo; Skalnik, David G; Okada, Yuki; Yoon, Ho-Geun; Kim, Jin-Hoi; Hong, Kwonho; Choi, Youngsok.
Afiliação
  • Ki BS; Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea.
  • Shim SH; Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea.
  • Park C; Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea.
  • Yoo H; Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea.
  • La H; Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea.
  • Lee OH; Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea.
  • Kwon Y; College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
  • Skalnik DG; Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
  • Okada Y; Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo, 113-0032, Japan.
  • Yoon HG; Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
  • Kim JH; Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea.
  • Hong K; Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea. hongk@konkuk.ac.kr.
  • Choi Y; Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea. choiys3969@konkuk.ac.kr.
Exp Mol Med ; 54(8): 1098-1108, 2022 08.
Article em En | MEDLINE | ID: mdl-35918532
Meiosis occurs specifically in germ cells to produce sperm and oocytes that are competent for sexual reproduction. Multiple factors are required for successful meiotic entry, progression, and termination. Among them, trimethylation of histone H3 on lysine 4 (H3K4me3), a mark of active transcription, has been implicated in spermatogenesis by forming double-strand breaks (DSBs). However, the role of H3K4me in transcriptional regulation during meiosis remains poorly understood. Here, we reveal that mouse CXXC finger protein 1 (Cfp1), a component of the H3K4 methyltransferase Setd1a/b, is dynamically expressed in differentiating male germ cells and safeguards meiosis by controlling gene expression. Genetic ablation of mouse CFP1 in male germ cells caused complete infertility with failure in prophase I of the 1st meiosis. Mechanistically, CFP1 binds to genes essential for spermatogenesis, and its loss leads to a reduction in H3K4me3 levels and gene expression. Importantly, CFP1 is highly enriched within the promoter/TSS of target genes to elevate H3K4me3 levels and gene expression at the pachytene stage of meiotic prophase I. The most enriched genes were associated with meiosis and homologous recombination during the differentiation of spermatocytes to round spermatids. Therefore, our study establishes a mechanistic link between CFP1-mediated transcriptional control and meiotic progression and might provide an unprecedented genetic basis for understanding human sterility.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sêmen / Transativadores / Meiose Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sêmen / Transativadores / Meiose Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2022 Tipo de documento: Article