Your browser doesn't support javascript.
loading
Folic Acid Enables Targeting Delivery of Lipodiscs by Circumventing IgM-Mediated Opsonization.
Wang, Huan; Lin, Shiqi; Wang, Songli; Jiang, Zhuxuan; Ding, Tianhao; Wei, Xiaoli; Lu, Ying; Yang, Feng; Zhan, Changyou.
Afiliação
  • Wang H; School of Pharmacy, Naval Medical University, Shanghai 200433, P.R. China.
  • Lin S; Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 201399, P.R
  • Wang S; Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 201399, P.R
  • Jiang Z; Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 201399, P.R
  • Ding T; Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 201399, P.R
  • Wei X; Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 201399, P.R
  • Lu Y; Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 201399, P.R
  • Yang F; School of Pharmacy, Naval Medical University, Shanghai 200433, P.R. China.
  • Zhan C; School of Pharmacy, Naval Medical University, Shanghai 200433, P.R. China.
Nano Lett ; 22(16): 6516-6522, 2022 08 24.
Article em En | MEDLINE | ID: mdl-35943299
ABSTRACT
Folic acid (FA) is one of the most widely utilized small-molecule ligands for cancer targeted drug delivery. Natural IgM was recently found to avidly absorb on the surface of FA-functionalized liposomes (FA-sLip), negatively regulating the in vivo performance by efficiently activating complement. Herein, FA-functionalized lipodiscs (FA-Disc) were constructed to successfully circumvent IgM-mediated opsonization and retained binding activity with folate receptors in vivo. The FA moiety along with the bound IgM was restricted to the highly curved rim of lipodiscs, leading to IgM incapability of presenting the membrane-bound conformation to trigger complement activation. The C1q docking, C3 binding, and C5a release were blocked and accelerated blood clearance phenomenon was mitigated of FA-Disc. FA-Disc retained folate binding activity and could effectively target folate receptor positive tumors in vivo. The present study provides a useful solution to avoid the negative regulation by IgM and achieve FA-enabled targeting by exploring disc-shaped nanocarriers.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article