Your browser doesn't support javascript.
loading
NMR Reveals Functionally Relevant Thermally Induced Structural Changes within the Native Ensemble of G-CSF.
Kellerman, Mark-Adam W; Almeida, Teresa; Rudd, Timothy R; Matejtschuk, Paul; Dalby, Paul A.
Afiliação
  • Kellerman MW; Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom.
  • Almeida T; Medicines & Healthcare Products Regulatory Agency, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
  • Rudd TR; Medicines & Healthcare Products Regulatory Agency, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
  • Matejtschuk P; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, United Kingdom.
  • Dalby PA; Medicines & Healthcare Products Regulatory Agency, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
Mol Pharm ; 19(9): 3242-3255, 2022 09 05.
Article em En | MEDLINE | ID: mdl-35948076
Structure-function relationships in proteins refer to a trade-off between stability and bioactivity, molded by evolution of the molecule. Identifying which protein amino acid residues jeopardize global or local stability for the benefit of bioactivity would reveal residues pivotal to this structure-function trade-off. Here, we use 15N-1H heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy to probe the microenvironment and dynamics of residues in granulocyte colony-stimulating factor (G-CSF) through thermal perturbation. From this analysis, we identified four residues (G4, A6, T133, and Q134) that we classed as significant to global stability, given that they all experienced large environmental and dynamic changes and were closely correlated to each other in their NMR characteristics. Additionally, we observe that roughly four structural clusters are subject to localized conformational changes or partial unfolding prior to global unfolding at higher temperature. Combining NMR observables with structure relaxation methods reveals that these structural clusters concentrate around loop AB (binding site III inclusive). This loop has been previously implicated in conformational changes that result in an aggregation prone state of G-CSF. Residues H43, V48, and S63 appear to be pivotal to an opening motion of loop AB, a change that is possibly also important for function. Hence, we present here an approach to profiling residues in order to highlight their potential roles in the two vital characteristics of proteins: stability and bioactivity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas / Fator Estimulador de Colônias de Granulócitos Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas / Fator Estimulador de Colônias de Granulócitos Idioma: En Ano de publicação: 2022 Tipo de documento: Article