Your browser doesn't support javascript.
loading
Computational pipeline provides mechanistic understanding of Omicron variant of concern neutralizing engineered ACE2 receptor traps.
Remesh, Soumya G; Merz, Gregory E; Brilot, Axel F; Chio, Un Seng; Rizo, Alexandrea N; Pospiech, Thomas H; Lui, Irene; Laurie, Mathew T; Glasgow, Jeff; Le, Chau Q; Zhang, Yun; Diwanji, Devan; Hernandez, Evelyn; Lopez, Jocelyne; Pawar, Komal Ishwar; Pourmal, Sergei; Smith, Amber M; Zhou, Fengbo; DeRisi, Joseph; Kortemme, Tanja; Rosenberg, Oren S; Glasgow, Anum; Leung, Kevin K; Wells, James A; Verba, Kliment A.
Afiliação
  • Remesh SG; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA - 94158, USA.
  • Merz GE; QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA.
  • Brilot AF; QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA.
  • Chio US; QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA.
  • Rizo AN; QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA.
  • Pospiech TH; QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA.
  • Lui I; QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA.
  • Laurie MT; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA - 94158, USA.
  • Glasgow J; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA - 94158, USA.
  • Le CQ; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA - 94158, USA.
  • Zhang Y; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA - 94158, USA.
  • Diwanji D; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA - 94158, USA.
  • Hernandez E; QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA.
  • Lopez J; QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA.
  • Pawar KI; QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA.
  • Pourmal S; QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA.
  • Smith AM; QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA.
  • Zhou F; QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA.
  • Kortemme T; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA - 94158, USA.
  • Rosenberg OS; Chan Zuckerberg Biohub, San Francisco, CA - 94158, USA.
  • Glasgow A; QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA.
  • Leung KK; QBI, University of California, San Francisco, CA 94158, USA.
  • Wells JA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA - 94158, USA.
  • Verba KA; The University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, San Francisco, CA - 94158, USA.
bioRxiv ; 2022 Aug 10.
Article em En | MEDLINE | ID: mdl-35982665
ABSTRACT
The SARS-CoV-2 Omicron variant, with 15 mutations in Spike receptor binding domain (Spike-RBD), renders virtually all clinical monoclonal antibodies against WT SARS-CoV-2 ineffective. We recently engineered the SARS-CoV-2 host entry receptor, ACE2, to tightly bind WT-Spike-RBD and prevent viral entry into host cells ("receptor traps"). Here we determine cryo-EM structures of our receptor traps in complex with full length Spike. We develop a multi-model pipeline combining Rosetta protein modeling software and cryo-EM to allow interface energy calculations even at limited resolution and identify interface side chains that allow for high affinity interactions between our ACE2 receptor traps and Spike-RBD. Our structural analysis provides a mechanistic rationale for the high affinity (0.53 - 4.2nM) binding of our ACE2 receptor traps to Omicron-RBD confirmed with biolayer interferometry measurements. Finally, we show that ACE2 receptor traps potently neutralize Omicron- and Delta-pseudotyped viruses, providing alternative therapeutic routes to combat this evolving virus.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article