Your browser doesn't support javascript.
loading
A PRMT5 inhibitor protects against noise-induced hearing loss by alleviating ROS accumulation.
Liu, Chang; Tang, Dongmei; Zheng, Zhiwei; Lu, Xiaoling; Li, Wen; Zhao, Liping; He, Yingzi; Li, Huawei.
Afiliação
  • Liu C; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China.
  • Tang D; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China.
  • Zheng Z; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China.
  • Lu X; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China.
  • Li W; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China.
  • Zhao L; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China.
  • He Y; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China. Elec
  • Li H; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China; Inst
Ecotoxicol Environ Saf ; 243: 113992, 2022 Sep 15.
Article em En | MEDLINE | ID: mdl-35994911
ABSTRACT
The aim of this study was to investigate the effect of LLY-283, a selective inhibitor of protein arginine methyltransferase 5 (PRMT5), on a noise-induced hearing loss (NIHL) mouse model and to identify a potential target for a therapeutic intervention against NIHL. Eight-week-old male C57BL/6 mice were used. The auditory brainstem response was measured 2 days after noise exposure. The apoptosis of hair cells (HCs) was detected by caspase-3/7 staining, whereas the accumulation of reactive oxygen species (ROS) was measured by 4-HNE staining. We demonstrated that the death of HCs and loss of cochlear synaptic ribbons induced by noise exposure could be significantly reduced by the presence of LLY-283. LLY-283 pretreatment before noise exposure notably decreased 4-HNE and caspase-3/7 levels in the cochlear HCs. We also noticed that the number of spiral ganglion neurons (SGNs) was notably increased after LLY-283 pretreatment. Furthermore, we showed that LLY-283 could increase the expression level of p-AKT in the SGNs. The underlying mechanism involves alleviation of ROS accumulation and activation of the PI3K/AKT pathway, indicating that LLY-283 might be a potential candidate for therapeutic intervention against NIHL.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Perda Auditiva Provocada por Ruído Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Perda Auditiva Provocada por Ruído Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article