Your browser doesn't support javascript.
loading
The Simultaneous Detection of Multiple Antibiotics in Milk and Pork Based on an Antibody Chip Biosensor.
Xiao, Jiaxu; Wei, Nana; Wu, Shuangmin; Li, Huaming; Yin, Xiaoyang; Si, Yu; Li, Long; Peng, Dapeng.
Afiliação
  • Xiao J; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China.
  • Wei N; Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528200, China.
  • Wu S; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China.
  • Li H; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China.
  • Yin X; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China.
  • Si Y; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China.
  • Li L; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China.
  • Peng D; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China.
Biosensors (Basel) ; 12(8)2022 Jul 29.
Article em En | MEDLINE | ID: mdl-36004974
In the modern farming industry, the irrational or illegal use of veterinary drugs leads to residues in animal-derived food, which can seriously threaten human health. Efficient detection of low concentrations of drug residues in animal products in a short time is a key challenge for analytical methods. This study proposes to use an antibody chip biosensor for rapid and automated analysis of cephalosporins, aminoglycosides, and sulfonamide antibiotics in pork and milk. 3D polymer slides were applied for the preparation of antibody chips. Ovalbumin (OVA) or bovine serum albumin (BSA) conjugates of the haptens were immobilized as spots on disposable chips. Monoclonal antibodies (mAbs) against cefalexin, ceftiofur, gentamicin, neomycin, and sulfonamides allowed the simultaneous detection of the respective analytes. Antibody binding was detected by a second antibody labeled with Cy3-generating fluorescence, which was scanned a with chip scanner. The limits of detection (LOD) for all the analytes were far below the respective maximum residue limits (MRLs) and ranged from 0.51 to 4.3 µg/kg. The average recoveries of all the analytes in each sample were in the range of 81.6-113.6%. The intra- and inter-assay CV was less than 12.9% and showed good accuracy and precision for all the antibiotics at the MRL level. The sample pretreatment method is simple, and the results are confirmed to be accurate by LC-MS/MS; therefore, this method is valuable for the quality control of animal-derived food.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Carne Vermelha / Carne de Porco Tipo de estudo: Diagnostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Carne Vermelha / Carne de Porco Tipo de estudo: Diagnostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article