Your browser doesn't support javascript.
loading
Efficient production of inhibitor-free foamy virus glycoprotein-containing retroviral vectors by proteoglycan-deficient packaging cells.
Munz, Clara Marie; Kreher, Henriette; Erdbeer, Alexander; Richter, Stefanie; Westphal, Dana; Yi, Buqing; Behrendt, Rayk; Stanke, Nicole; Lindel, Fabian; Lindemann, Dirk.
Afiliação
  • Munz CM; Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
  • Kreher H; Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
  • Erdbeer A; Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
  • Richter S; Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
  • Westphal D; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany.
  • Yi B; Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
  • Behrendt R; Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
  • Stanke N; Institute of Immunology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, 01307 Dresden, Germany.
  • Lindel F; Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
  • Lindemann D; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany.
Mol Ther Methods Clin Dev ; 26: 394-412, 2022 Sep 08.
Article em En | MEDLINE | ID: mdl-36034773
ABSTRACT
Foamy viruses (FVs) or heterologous retroviruses pseudotyped with FV glycoprotein enable transduction of a great variety of target tissues of disparate species. Specific cellular entry receptors responsible for this exceptionally broad tropism await their identification. Though, ubiquitously expressed heparan sulfate proteoglycan (HS-PG) is known to serve as an attachment factor of FV envelope (Env)-containing virus particles, greatly enhancing target cell permissiveness. Production of high-titer, FV Env-containing retroviral vectors is strongly dependent on the use of cationic polymer-based transfection reagents like polyethyleneimine (PEI). We identified packaging cell-surface HS-PG expression to be responsible for this requirement. Efficient release of FV Env-containing virus particles necessitates neutralization of HS-PG binding sites by PEI. Remarkably, remnants of PEI in FV Env-containing vector supernatants, which are not easily removable, negatively impact target cell transduction, in particular those of myeloid and lymphoid origin. To overcome this limitation for production of FV Env-containing retrovirus supernatants, we generated 293T-based packaging cell lines devoid of HS-PG by genome engineering. This enabled, for the first, time production of inhibitor-free, high-titer FV Env-containing virus supernatants by non-cationic polymer-mediated transfection. Depending on the type of virus, produced titers were 2- to 10-fold higher compared with those obtained by PEI transfection.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article