Your browser doesn't support javascript.
loading
Ionic Liquid-Type Additive for Lithium Metal Batteries Operated in LiPF6 Based-Electrolyte Containing 2500 ppm H2O.
Ma, Xinyu; Yu, Jiangtao; Dong, Qingyu; Zou, Xiuyang; Zheng, Lei; Hu, Yin; Shen, Yanbin; Chen, Liwei; Yan, Feng.
Afiliação
  • Ma X; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials College of Chemistry, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
  • Yu J; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials College of Chemistry, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
  • Dong Q; i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P.R. China.
  • Zou X; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials College of Chemistry, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
  • Zheng L; i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P.R. China.
  • Hu Y; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials College of Chemistry, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
  • Shen Y; i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P.R. China.
  • Chen L; i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P.R. China.
  • Yan F; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials College of Chemistry, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
ACS Appl Mater Interfaces ; 14(36): 41103-41113, 2022 Sep 14.
Article em En | MEDLINE | ID: mdl-36044429
ABSTRACT
The presence of trace amounts of moisture in the electrolyte can cause hydrolysis of LiPF6 and deteriorate the stability of lithium metal batteries. Herein, we propose a multifunctional ionic liquid-type additive constituting a 1-methyl-1-butyl pyrrolidium cation (Py14+) and an acetate anion (CH3COO-) (denoted as IL-AC in this study), which can effectively adsorb the trace moisture and thus prevent the hydrolysis of LiPF6 via intermolecular interactions. The prepared IL-AC can also remove HF to suppress the dissolution of transition metal ions from cathode materials through the reaction CH3COO- + HF → CH3COOH + F-. Compared with the baseline electrolyte, the contents of HF and transition metal ions are significantly lower in the electrolyte with 0.5% IL-AC. Upon the addition of 0.5% IL-AC additive and 2500 ppm H2O, the Li||NCM811 battery shows a capacity of 153.7 mAh g-1 after 300 cycles, while the Li||LNMO battery possesses stable capacity retention of 93.22% after 500 cycles at 1C and a Coulombic efficiency greater than 99%. Thus, this work provides a convenient and effective method to absorb trace amounts of water and remove HF in the electrolyte and provides a new path for the expensive and tedious process of water removal from the electrolyte in industry.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article