Your browser doesn't support javascript.
loading
Asymmetric Intermolecular Iodinative Difunctionalization of Allylic Sulfonamides Enabled by Organosulfide Catalysis: Modular Entry to Iodinated Chiral Molecules.
Liao, Lihao; Xu, Xinru; Ji, Jieying; Zhao, Xiaodan.
Afiliação
  • Liao L; Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China.
  • Xu X; Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China.
  • Ji J; Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China.
  • Zhao X; Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China.
J Am Chem Soc ; 144(36): 16490-16501, 2022 09 14.
Article em En | MEDLINE | ID: mdl-36053004
Electrophilic halogenation of alkenes is a powerful transformation offering a convenient route for the construction of valuable functionalized molecules. However, as a highly important reaction in this field, catalytic asymmetric intermolecular iodinative difunctionalization remains a formidable challenge. Herein, we report that an efficient Lewis basic chiral sulfide-catalyzed approach enables this reaction. By this approach, challenging substrates such as γ,γ-disubstituted allylic sulfonamides and 1,1-disubstituted alkenes with an allylic sulfonamide unit undergo electrophilic iodinative difunctionalization to give a variety of iodine-functionalized chiral molecules in good yields with excellent enantio- and diastereoselectivities. A series of free phenols as nucleophiles are successfully incorporated into the substrates. Aside from phenols, primary and secondary alcohols, fluoride, and azide also serve as efficient nucleophiles. The obtained iodinated products are a good platform molecule, which can be easily transformed into various chiral compounds such as α-aryl ketones, chiral secondary amines, and aziridines via rearrangement or substitution. Mechanistic studies revealed that the chiral sulfide catalyst displays a superior effect on control of the reactivity of electrophilic iodine and the enantioselective construction of the chiral iodiranium ion intermediate and catalyst aggregates might be formed as a resting state in the reactions.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sulfonamidas / Iodo Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sulfonamidas / Iodo Idioma: En Ano de publicação: 2022 Tipo de documento: Article