Your browser doesn't support javascript.
loading
Competing Energy Transfer-Modulated Dual Emission in Mn2+-Doped Cs2NaTbCl6 Rare-Earth Double Perovskites.
Chen, Yuanjie; Zeng, Ruosheng; Wei, Qilin; Zhang, Shuai; Luo, Binbin; Chen, Canxu; Zhu, Xiaoshan; Cao, Sheng; Zou, Bingsuo; Zhang, Jin Zhong.
Afiliação
  • Chen Y; School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
  • Zeng R; School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
  • Wei Q; School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
  • Zhang S; School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
  • Luo B; Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China.
  • Chen C; School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
  • Zhu X; Department of Electrical and Biomedical Engineering, University of Nevada Reno, Reno, Nevada 89557, United States.
  • Cao S; School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
  • Zou B; School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
  • Zhang JZ; Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States.
J Phys Chem Lett ; 13(36): 8529-8536, 2022 Sep 15.
Article em En | MEDLINE | ID: mdl-36067065
A2BIBIIIX6 double perovskites are promising materials due to their outstanding photoelectronic properties and excellent stability in the environment. Herein, we synthesized Mn2+:Cs2NaTbCl6 with dual emission through a solvothermal method for the first time. Mn2+:Cs2NaTbCl6 double perovskites exhibit excellent environmental stability and high photoluminescence quantum yields (PLQYs). The Cs2NaTbCl6 was successfully doped with Mn2+ in two modes: at Mn-feeding concentrations below 1%, Mn2+ first tend to insert into the interstitial void, but if the Mn-feeding concentration exceeds 1%, Mn2+ will further substitute Na+ site of the Cs2NaTbCl6 lattice and thus both two doping modes coexist. After Mn2+ doping, efficient energy transfer from the 5D4 level of Tb3+ ions to the 4T1 level of Mn2+ ions occurs, resulting in tunable dual emission from the Tb3+5D4 → 7FJ=6,5,4,3 transition and Mn2+4T1 → 6A1 transition. Further, LED based on the Mn2+:Cs2NaTbCl6 double perovskites exhibits excellent performance and stability. This work demonstrates a strategy to achieve novel lanthanide-based double perovskites with potential applications in photonics.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article