Your browser doesn't support javascript.
loading
Chemical Modulation of Glucose Metabolism with a Fluorinated CaCO3 Nanoregulator Can Potentiate Radiotherapy by Programming Antitumor Immunity.
Dong, Ziliang; Wang, Chunjie; Gong, Yimou; Zhang, Yunyun; Fan, Qin; Hao, Yu; Li, Quguang; Wu, Yumin; Zhong, Xiaoyan; Yang, Kai; Feng, Liangzhu; Liu, Zhuang.
Afiliação
  • Dong Z; Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China.
  • Wang C; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China.
  • Gong Y; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China.
  • Zhang Y; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China.
  • Fan Q; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China.
  • Hao Y; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China.
  • Li Q; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China.
  • Wu Y; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China.
  • Zhong X; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RADX), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, Jiangsu, P
  • Yang K; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RADX), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, Jiangsu, P
  • Feng L; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China.
  • Liu Z; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China.
ACS Nano ; 16(9): 13884-13899, 2022 09 27.
Article em En | MEDLINE | ID: mdl-36075132
Tumor hypoxia and acidity are well-known features in solid tumors that cause immunosuppression and therapeutic resistance. Herein, we rationally synthesized a multifunctional fluorinated calcium carbonate (fCaCO3) nanoregulator by coating CaCO3 nanoparticles with dopamine-grafted perfluorosebacic acid (DA2-PFSEA) and ferric ions by utilizing their coordination interaction. After PEGylation, the obtained fCaCO3-PEG showed high loading efficacy to perfluoro-15-crown-5-ether (PFCE), a type of perfluorocarbon with high oxygen solubility, thereby working as both oxygen nanoshuttles and proton sponges to reverse tumor hypoxia and acidity-induced resistance to radiotherapy. The as-prepared PFCE@fCaCO3-PEG could not only function as long-circulating oxygen nanoshuttles to attenuate tumor hypoxia but also neutralize the acidic tumor microenvironment by restricting the production of lactic acid and reacting with extracellular protons. As a result, treatment with PFCE@fCaCO3-PEG could improve the therapeutic outcome of radiotherapy toward two murine tumors with distinct immunogenicity. The PFCE@fCaCO3-PEG-assisted radiotherapy could also collectively inhibit the growth of unirradiated tumors and reject rechallenged tumors by synergistically eliciting protective antitumor immunity. Therefore, our work presents the preparation of fluorinated CaCO3 nanoregulators to reverse tumor immunosuppression and potentiate radiotherapy through chemically modulating tumor hypoxic and acidic microenvironments tightly associated with tumor glucose metabolism.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Fluorocarbonos / Neoplasias Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Fluorocarbonos / Neoplasias Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article