Your browser doesn't support javascript.
loading
Identification, molecular characterization, and in silico structural analysis of larval salivary glands Netrin-A as a potent biomarker from Lucilia sericata (Diptera: Calliphoridae).
Bagheri, Masoumeh; Alipour, Hamzeh; Karamzadeh, Tahereh; Shahriari-Namadi, Marzieh; Raz, Abbasali; Azizi, Kourosh; Dadgar Pakdel, Javad; Moemenbellah-Fard, Mohammad Djaefar.
Afiliação
  • Bagheri M; Shiraz University of Medical Sciences, Shiraz, Fars, Islamic Republic of Iran.
  • Alipour H; Shiraz University of Medical Sciences, Shiraz, Fars, Islamic Republic of Iran. alipoorh@sums.ac.ir.
  • Karamzadeh T; Shiraz University of Medical Sciences, Shiraz, Fars, Islamic Republic of Iran.
  • Shahriari-Namadi M; Shiraz University of Medical Sciences, Shiraz, Fars, Islamic Republic of Iran.
  • Raz A; Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
  • Azizi K; Shiraz University of Medical Sciences, Shiraz, Fars, Islamic Republic of Iran.
  • Dadgar Pakdel J; Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
  • Moemenbellah-Fard MD; Shiraz University of Medical Sciences, Shiraz, Fars, Islamic Republic of Iran. momenbf@yahoo.com.
Genetica ; 150(6): 379-394, 2022 Dec.
Article em En | MEDLINE | ID: mdl-36136258
ABSTRACT
The greenbottle blowfly Lucilia sericata (L. sericata) is increasingly used in larval therapy of chronic wounds. Netrins as bifunctional proteins are in the superfamily of Laminins secreted from larval salivary glands. The Netrin protein has a significant instructive role in axon guidance, causing neuronal outgrowth, angiogenesis, and cell migration. It seems to be crucial in wound healing and acts as a potential biomarker in diagnosing some clinical diseases. This survey aimed to identify molecular features and analyze in silico structural configuration of Netrin-A in L. sericata larvae. The larvae were reared under standard maggotarium conditions. The nucleic acid sequence of L. sericata Netrin-A (LSN-A) was then identified using rapid amplification of circular DNA ends (RACE) and rapid amplification of genomic ends (RAGE). Parts of the Netrin-A gene, including the middle, 3'-, and 5'-ends, were identified, TA cloned in pTG19 plasmid, and transferred into DH5ɑ Escherichia coli. Each part was sequenced and assembled using SeqMan software. This gene structure was further subjected to in silico analysis. The DNA of LSN-A was identified to be 2407 bp, while its mRNA sequence was recognized as 2115 bp by Oligo0.7 software. It translated the Netrin-A protein with 704 amino acid residues. Its estimated molecular weight was 78.6 kDa. Sequencing of this fragment and its BLAST analysis revealed laminin-based high (95%) similarity with the mRNA sequence of Lucilia cuprina Netrin-A. The 3-D structure of Netrin-A drawn by SWISS-MODEL exhibited its partial resemblance to the reference molecule Netrin-1 of Homo sapiens. This study supports the molecular and structural analyses of LSN-A protein, which could lead to wound treatment. Ultimately, it can be an effective candidate to ameliorate injury. Our next attempt is to produce LSN-A recombinant protein for use in biomedical sciences.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dípteros Tipo de estudo: Diagnostic_studies / Guideline Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dípteros Tipo de estudo: Diagnostic_studies / Guideline Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article