Your browser doesn't support javascript.
loading
Interfacial Photothermal Heat Accumulation for Simultaneous Salt Rejection and Freshwater Generation; an Efficient Solar Energy Harvester.
Wei, Zhou; Arshad, Naila; Hui, Chen; Irshad, Muhammad Sultan; Mushtaq, Naveed; Hussain, Shahid; Shah, Matiullah; Naqvi, Syed Zohaib Hassan; Rizwan, Muhammad; Shahzad, Naeem; Li, Hongrong; Lu, Yuzheng; Wang, Xianbao.
Afiliação
  • Wei Z; Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engi
  • Arshad N; Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China.
  • Hui C; Institute of Quantum Optics and Quantum Information, School of Science, Xi'an Jiaotong University (XJTU), Xi'an 710049, China.
  • Irshad MS; Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engi
  • Mushtaq N; Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engi
  • Hussain S; Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China.
  • Shah M; Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engi
  • Naqvi SZH; School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
  • Rizwan M; Department of Physics, University of Wah, Wah Cantonment 47040, Pakistan.
  • Shahzad N; Department of Electronics Engineering, University of Engineering and Technology, Taxila 47080, Pakistan.
  • Li H; Department of Physics, University of Wah, Wah Cantonment 47040, Pakistan.
  • Lu Y; CE Wing, MCE, National University of Sciences and Technology Risalpur Campus, Risalpur 430062, Pakistan.
  • Wang X; Institute of Quantum Optics and Quantum Information, School of Science, Xi'an Jiaotong University (XJTU), Xi'an 710049, China.
Nanomaterials (Basel) ; 12(18)2022 Sep 15.
Article em En | MEDLINE | ID: mdl-36144992
ABSTRACT
Water scarcity has emerged as an intense global threat to humanity and needs prompt attention from the scientific community. Solar-driven interfacial evaporation and seawater desalination are promising strategies to resolve the primitive water shortage issue using renewable resources. However, the fragile solar thermal devices, complex fabricating techniques, and high cost greatly hinder extensive solar energy utilization in remote locations. Herein, we report the facile fabrication of a cost-effective solar-driven interfacial evaporator and seawater desalination system composed of carbon cloth (CC)-wrapped polyurethane foam (CC@PU). The developed solar evaporator had outstanding photo-thermal conversion efficiency (90%) with a high evaporation rate (1.71 kg m-2 h-1). The interfacial layer of black CC induced multiple incident rays on the surface allowing the excellent solar absorption (92%) and intensifying heat localization (67.37 °C) under 1 kW m-2 with spatially defined hydrophilicity to facilitate the easy vapor escape and validate the efficacious evaporation structure using extensive solar energy exploitation for practical application. More importantly, the long-term evaporation experiments with minimum discrepancy under seawater conditions endowed excellent mass change (15.24 kg m-2 in consecutive 8 h under 1 kW m-2 solar irradiations) and promoted its operational sustainability for multi-media rejection and self-dissolving potential (3.5 g NaCl rejected from CC@PU surface in 210 min). Hence, the low-cost and facile fabrication of CC@PU-based interfacial evaporation structure showcases the potential for enhanced solar-driven interfacial heat accumulation for freshwater production with simultaneous salt rejection.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article