Accelerated Synthetic MRI with Deep Learning-Based Reconstruction for Pediatric Neuroimaging.
AJNR Am J Neuroradiol
; 43(11): 1653-1659, 2022 11.
Article
em En
| MEDLINE
| ID: mdl-36175085
BACKGROUND AND PURPOSE: Synthetic MR imaging is a time-efficient technique. However, its rather long scan time can be challenging for children. This study aimed to evaluate the clinical feasibility of accelerated synthetic MR imaging with deep learning-based reconstruction in pediatric neuroimaging and to investigate the impact of deep learning-based reconstruction on image quality and quantitative values in synthetic MR imaging. MATERIALS AND METHODS: This study included 47 children 2.3-14.7 years of age who underwent both standard and accelerated synthetic MR imaging at 3T. The accelerated synthetic MR imaging was reconstructed using a deep learning pipeline. The image quality, lesion detectability, tissue values, and brain volumetry were compared among accelerated deep learning and accelerated and standard synthetic data sets. RESULTS: The use of deep learning-based reconstruction in the accelerated synthetic scans significantly improved image quality for all contrast weightings (P < .001), resulting in image quality comparable with or superior to that of standard scans. There was no significant difference in lesion detectability between the accelerated deep learning and standard scans (P > .05). The tissue values and brain tissue volumes obtained with accelerated deep learning and the other 2 scans showed excellent agreement and a strong linear relationship (all, R 2 > 0.9). The difference in quantitative values of accelerated scans versus accelerated deep learning scans was very small (tissue values, <0.5%; volumetry, -1.46%-0.83%). CONCLUSIONS: The use of deep learning-based reconstruction in synthetic MR imaging can reduce scan time by 42% while maintaining image quality and lesion detectability and providing consistent quantitative values. The accelerated deep learning synthetic MR imaging can replace standard synthetic MR imaging in both contrast-weighted and quantitative imaging.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Aprendizado Profundo
Limite:
Child
/
Humans
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article