Your browser doesn't support javascript.
loading
Sex-dependent obesogenic effect of tetracycline on Drosophila melanogaster deteriorated by dysrhythmia.
Guo, Xueping; Yu, Zhenyang; Yin, Daqiang.
Afiliação
  • Guo X; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Jiaxing Tongji Institute for Environment, Jiaxing 3014051, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
  • Yu Z; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Jiaxing Tongji Institute for Environment, Jiaxing 3014051, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address: yuzhenyang3227@tongji.edu.cn.
  • Yin D; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
J Environ Sci (China) ; 124: 472-480, 2023 Feb.
Article em En | MEDLINE | ID: mdl-36182155
ABSTRACT
Antibiotics have been identified as obesogens contributing to the prevalence of obesity. Moreover, their environmental toxicity shows sex dependence, which might also explain the sex-dependent obesity observed. Yet, the direct evidence for such a connection and the underlying mechanisms remain to be explored. In this study, the effects of tetracycline, which is a representative antibiotic found in both environmental and food samples, on Drosophila melanogaster were studied with consideration of both sex and circadian rhythms (represented by the eclosion rhythm). Results showed that in morning-eclosed adults, tetracycline significantly stimulated the body weight of females (AM females) at 0.1, 1.0, 10.0 and 100.0 µg/L, while tetracycline only stimulated the body weight of males (AM males) at 1.0 µg/L. In the afternoon-eclosed adults, tetracycline significantly stimulated the body weight of females (PM females) at 0.1, 1.0 and 100.0 µg/L, while it showed more significant stimulation in males (PM males) at all concentrations. Notably, the stimulation levels were the greatest in PM males among all the adults. The results showed the clear sex dependence of the obesogenic effects, which was diminished by dysrhythmia. Further biochemical assays and clustering analysis suggested that the sex- and rhythm-dependent obesogenic effects resulted from the bias toward lipogenesis against lipolysis. Moreover, they were closely related to the preference for the energy storage forms of lactate and glucose and also to the presence of excessive insulin, with the involvement of glucolipid metabolism. Such relationships indicated potential bridges between the obesogenic effects of pollutants and other diseases, e.g., cancer and diabetes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Ambientais / Insulinas / Compostos Heterocíclicos Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Ambientais / Insulinas / Compostos Heterocíclicos Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article