Your browser doesn't support javascript.
loading
Single and combined effect of bisphenol A with high sucrose diet on the diabetic and renal tubular dysfunction phenotypes in Drosophila melanogaster.
Rani, Lavi; Saini, Sanjay; Thakur, Ravindra Singh; Patel, Devendra Kumar; Chowdhuri, Debapratim Kar; Gautam, Naveen Kumar.
Afiliação
  • Rani L; Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhavan, 3
  • Saini S; Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhavan, 3
  • Thakur RS; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
  • Patel DK; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
  • Chowdhuri DK; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India. Ele
  • Gautam NK; Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. Electronic address: gautam.naveen6@gmail.com.
Environ Toxicol Pharmacol ; 96: 103977, 2022 Nov.
Article em En | MEDLINE | ID: mdl-36210596
In the present study, effect of exposure of bisphenol A (BPA) and combined exposure of BPA + HSD has been investigated on the glucose homeostasis and associated renal complications in Drosophila. Exposure of 1.0 mM BPA alone induced type 2 diabetes like condition (T2D) in adult male D. melanogaster via oxidative stress. Elevated TGF-ß signaling was evident by increased expression of baboon (babo) in BPA exposed organism that stimulated the modulation of extracellular matrix (ECM) component collagen IV resulting in the fibrosis of the Malpighian tubules (MTs). Combined exposure of BPA + HSD (high sucrose diet) resulted in the increased magnitude of T2D and MTs dysfunction parameters. Taken together, the study illustrates that BPA has diabetogenic potential in exposed Drosophila that caused adverse effects on their MTs and combined exposure with BPA and HSD could aggravate the renal tubular dysfunction. The study further suggests the use of Drosophila model to study the environmental chemicals induced diabetes mediated renal dysfunction.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Drosophila / Diabetes Mellitus Tipo 2 / Nefropatias Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Drosophila / Diabetes Mellitus Tipo 2 / Nefropatias Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article