Your browser doesn't support javascript.
loading
A simple SEIR-V model to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission using wastewater-based surveillance data.
Phan, Tin; Brozak, Samantha; Pell, Bruce; Gitter, Anna; Xiao, Amy; Mena, Kristina D; Kuang, Yang; Wu, Fuqing.
Afiliação
  • Phan T; Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, NM, USA.
  • Brozak S; School of Mathematical and Statistical Sciences, Arizona State University, AZ, USA.
  • Pell B; Department of Mathematics and Computer Science, Lawrence Technological University, MI, USA.
  • Gitter A; The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX, USA 77030.
  • Xiao A; Center for Microbiome Informatics and Therapeutics; Department of Biological Engineering, Massachusetts Institute of Technology.
  • Mena KD; The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX, USA 77030.
  • Kuang Y; School of Mathematical and Statistical Sciences, Arizona State University, AZ, USA. Electronic address: kuang@asu.edu.
  • Wu F; The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX, USA 77030. Electronic address: fuqing.wu@uth.tmc.edu.
Sci Total Environ ; 857(Pt 1): 159326, 2023 Jan 20.
Article em En | MEDLINE | ID: mdl-36220466
Wastewater-based surveillance (WBS) has been widely used as a public health tool to monitor SARS-CoV-2 transmission. However, epidemiological inference from WBS data remains understudied and limits its application. In this study, we have established a quantitative framework to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission through integrating WBS data into an SEIR-V model. We conceptually divide the individual-level viral shedding course into exposed, infectious, and recovery phases as an analogy to the compartments in a population-level SEIR model. We demonstrated that the effect of temperature on viral losses in the sewer can be straightforwardly incorporated in our framework. Using WBS data from the second wave of the pandemic (Oct 02, 2020-Jan 25, 2021) in the Greater Boston area, we showed that the SEIR-V model successfully recapitulates the temporal dynamics of viral load in wastewater and predicts the true number of cases peaked earlier and higher than the number of reported cases by 6-16 days and 8.3-10.2 folds (R = 0.93). This work showcases a simple yet effective method to bridge WBS and quantitative epidemiological modeling to estimate the prevalence and transmission of SARS-CoV-2 in the sewershed, which could facilitate the application of wastewater surveillance of infectious diseases for epidemiological inference and inform public health actions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: SARS-CoV-2 / COVID-19 Tipo de estudo: Prevalence_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: SARS-CoV-2 / COVID-19 Tipo de estudo: Prevalence_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article