Optimized Semi-Interpenetrated p(HEMA)/PVP Hydrogels for Artistic Surface Cleaning.
Materials (Basel)
; 15(19)2022 Sep 28.
Article
em En
| MEDLINE
| ID: mdl-36234079
The synthesis of hydrogels that are based on poly-hydroxyethyl methacrylate, p(HEMA), network semi-interpenetrated with linear polyvinylpyrrolidone (PVP) was optimized in order to allow both a fast preparation and a high cleaning effectiveness of artistic surfaces. For this purpose, the synthesis parameters of the gel with PVP having a high molecular weight (1300 kDa) that were reported in the literature, were modified in terms of temperature, time, and crosslinker amount. In addition, the gel composition was modified by using PVP with different molecular weights, by changing the initiator and by adding maleic anhydride. The modified gels were characterized in terms of equilibrium water content (EWC), water uptake, conversion grade, and thermal properties by differential scanning calorimetry (DSC). The cleaning effectiveness of the gels was studied through the removal of copper salts from laboratory-stained specimens. Cleaning materials were characterized by electron paramagnetic resonance (EPR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and inductively-coupled plasma-mass spectrometry (ICP-MS). Cleaning was assessed on marble specimens by color variation measurements. The gel synthesis is accelerated by using PVP 360 kDa. The addition of maleic anhydride in the p(HEMA)/PVP network allows the most effective removal of copper salt deposits from marble since it acts as a chelator towards copper ions.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article