Your browser doesn't support javascript.
loading
The Core Complex of the Ca2+-Triggered Presynaptic Fusion Machinery.
Brunger, Axel T; Leitz, Jeremy.
Afiliação
  • Brunger AT; Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States; Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States; Department of Structural Biology, Stanford University, Stanford, United States; Department of Photon Science, Stanford University, Stanford, United States; Howard Hughes Medical Institute, Stanford University, Stanford, United States. Electronic address: brunger@stanford.edu.
  • Leitz J; Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States; Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States; Department of Structural Biology, Stanford University, Stanford, United States; Department of Photon Science, Stanford University, Stanford, United States; Howard Hughes Medical Institute, Stanford University, Stanford, United States.
J Mol Biol ; 435(1): 167853, 2023 01 15.
Article em En | MEDLINE | ID: mdl-36243149
Synaptic neurotransmitter release is mediated by an orchestra of presynaptic proteins that precisely control and trigger fusion between synaptic vesicles and the neuron terminal at the active zone upon the arrival of an action potential. Critical to this process are the neuronal SNAREs (Soluble N-ethylmaleimide sensitive factor Attachment protein REceptor), the Ca2+-sensor synaptotagmin, the activator/regulator complexin, and other factors. Here, we review the interactions between the SNARE complex and synaptotagmin, with focus on the so-called primary interface between synaptotagmin and the SNARE complex that has been validated in terms of its physiological relevance. We discuss several other but less validated interfaces as well, including the so-called tripartite interface, and we discuss the pros and cons for these possible alternative interfaces. We also present new molecular dynamics simulations of the tripartite interface and new data of an inhibitor of the primary interface in a reconstituted system of synaptic vesicle fusion.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vesículas Sinápticas / Transmissão Sináptica / Fusão de Membrana Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vesículas Sinápticas / Transmissão Sináptica / Fusão de Membrana Idioma: En Ano de publicação: 2023 Tipo de documento: Article