Your browser doesn't support javascript.
loading
Multiobjective problem modeling of the capacitated vehicle routing problem with urgency in a pandemic period.
Altinoz, Mehmet; Altinoz, O Tolga.
Afiliação
  • Altinoz M; Department of International Trade and Logistics, Bolu Izzet Baysal University, Bolu, Turkey.
  • Altinoz OT; Department of Electrical and Electronics Engineering, Ankara University, Ankara, Turkey.
Neural Comput Appl ; 35(5): 3865-3882, 2023.
Article em En | MEDLINE | ID: mdl-36267470
This research is based on the capacitated vehicle routing problem with urgency where each vertex corresponds to a medical facility with a urgency level and the traveling vehicle could be contaminated. This contamination is defined as the infectiousness rate, which is defined for each vertex and each vehicle. At each visited vertex, this rate for the vehicle will be increased. Therefore time-total distance it is desired to react to vertex as fast as possible- and infectiousness rate are main issues in the problem. This problem is solved with multiobjective optimization algorithms in this research. As a multiobjective problem, two objectives are defined for this model: the time and the infectiousness, and will be solved using multiobjective optimization algorithms which are nondominated sorting genetic algorithm (NSGAII), grid-based evolutionary algorithm GrEA, hypervolume estimation algorithm HypE, strength Pareto evolutionary algorithm shift-based density estimation SPEA2-SDE, and reference points-based evolutionary algorithm.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article