Your browser doesn't support javascript.
loading
Rectangular tolerance regions and multivariate normal reference regions in laboratory medicine.
Lucagbo, Michael Daniel; Mathew, Thomas.
Afiliação
  • Lucagbo MD; Department of Mathematics & Statistics, University of Maryland Baltimore County, Baltimore, Maryland, USA.
  • Mathew T; School of Statistics, University of the Philippines Diliman, Quezon City, Philippines.
Biom J ; 65(3): e2100180, 2023 03.
Article em En | MEDLINE | ID: mdl-36284498
Reference intervals are widely used in the interpretation of results of biochemical and physiological tests of patients. When there are multiple biochemical analytes measured from each subject, a multivariate reference region is needed. Because of their greater specificity against false positives, such reference regions are more desirable than separate univariate reference intervals that disregard the cross-correlations between variables. Traditionally, under multivariate normality, reference regions have been constructed as ellipsoidal regions. This approach suffers from a major drawback: it cannot detect component-wise extreme observations. In the present work, procedures are developed to construct rectangular reference regions in the multivariate normal setup. The construction is based on the criteria for tolerance intervals. The problems addressed include the computation of a rectangular tolerance region and simultaneous tolerance intervals. Also addressed is the computation of mixed reference intervals that include both two-sided and one-sided limits, simultaneously. A parametric bootstrap approach is used in the computations, and the accuracy of the proposed methodology is assessed using estimated coverage probabilities. The problem of sample size determination is also addressed, and the results are illustrated using examples that call for the computation of reference regions.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article