Your browser doesn't support javascript.
loading
Synthesis and Modification of Gelatin Methacryloyl (GelMA) with Antibacterial Quaternary Groups and Its Potential for Periodontal Applications.
Vargas-Alfredo, Nelson; Munar-Bestard, Marta; Ramis, Joana Maria; Monjo, Marta.
Afiliação
  • Vargas-Alfredo N; Cell Therapy and Tissue Engineering Group, Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain.
  • Munar-Bestard M; Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, University Hospital Son Espases, Edificio S, 07120 Palma de Mallorca, Spain.
  • Ramis JM; Cell Therapy and Tissue Engineering Group, Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain.
  • Monjo M; Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, University Hospital Son Espases, Edificio S, 07120 Palma de Mallorca, Spain.
Gels ; 8(10)2022 Oct 05.
Article em En | MEDLINE | ID: mdl-36286131
ABSTRACT
Gelatin methacryloyl (GelMA) hydrogels have been widely used for different biomedical applications due to their tunable physical characteristics and appropriate biological properties. In addition, GelMA could be modified with the addition of functional groups providing inherent antibacterial capabilities. Here, GelMA-based hydrogels were developed through the combination of a GelMA unmodified and modified polymer with quaternary ammonium groups (GelMAQ). The GelMAQ was synthesized from GelMA with a low degree of substitution of methacrylamide groups (DSMA) and grafted with glycidyltrimethylammonium chloride in the free amine groups of the lysine moieties present in the original gelatin. GelMAs with high DSMA and GelMAQ were combined 50/50% or 25/75% (w/w), respectively, and compared to controls GelMA and GelMA with added chlorhexidine (CHX) at 0.2%. The different hydrogels were characterized using 1H-NMR spectroscopy and swelling behavior and tested in (1) Porphyromonas gingivalis to evaluate their antibacterial properties and (2) human gingival fibroblast to evaluate their cell biocompatibility and regenerative properties. GelMA/GelMAQ 25/75% showed good antibacterial properties but also excellent biocompatibility and regenerative properties toward human fibroblasts in the wound healing assay. Taken together, these results suggest that the modification of GelMA with quaternary groups could facilitate periodontal tissue regeneration, with good biocompatibility and added antibacterial properties.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article