Your browser doesn't support javascript.
loading
Mg-Doped ZnO Nanoparticles with Tunable Band Gaps for Surface-Enhanced Raman Scattering (SERS)-Based Sensing.
Adesoye, Samuel; Al Abdullah, Saqer; Nowlin, Kyle; Dellinger, Kristen.
Afiliação
  • Adesoye S; Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA.
  • Al Abdullah S; Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA.
  • Nowlin K; Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 E Gate City Blvd, Greensboro, NC 27401, USA.
  • Dellinger K; Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA.
Nanomaterials (Basel) ; 12(20)2022 Oct 12.
Article em En | MEDLINE | ID: mdl-36296754
ABSTRACT
Semiconductors have great potential as surface-enhanced Raman scattering (SERS) substrates due to their excellent physiochemical properties. However, they provide low signal enhancements relative to their plasmonic counterparts, which necessitates innovation in their synthesis and application. Substitutional atomic doping is proposed to improve SERS enhancement by controlling electronic properties, such as the band gap. In this work, zinc oxide (ZnO) nanoparticles were synthesized by co-precipitation and doped with magnesium (Mg) at concentrations ranging from 2-10%. Nanoparticle morphology and size were obtained by scanning electron microscopy (SEM). Elemental composition and chemical states were determined using X-ray photoelectron spectroscopy (XPS). Optical properties were obtained with a UV-vis spectrophotometer, while a Raman spectrometer was used to acquire Raman signal enhancements. Stability was assessed by UV-vis spectroscopy, while cytotoxicity was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that the absorption edge of Mg-doped ZnO nanoparticles was red-shifted compared to pure ZnO nanoparticles. The band gap decreased (3.3-3.01 eV) with increasing Mg doping, while the highest Raman enhancement was observed at 2% doping. No significant cytotoxic effects were observed at low concentrations (3-12 µg/mL). Overall, this study provides evidence for the tunability of ZnO substrates and may serve as a platform for applications in molecular biosensing.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article