Your browser doesn't support javascript.
loading
MINI-EX: Integrative inference of single-cell gene regulatory networks in plants.
Ferrari, Camilla; Manosalva Pérez, Nicolás; Vandepoele, Klaas.
Afiliação
  • Ferrari C; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
  • Manosalva Pérez N; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
  • Vandepoele K; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium. Electronic address: klaas.vandepoele@psb.vib-ugent.be.
Mol Plant ; 15(11): 1807-1824, 2022 11 07.
Article em En | MEDLINE | ID: mdl-36307979
ABSTRACT
Multicellular organisms, such as plants, are characterized by highly specialized and tightly regulated cell populations, establishing specific morphological structures and executing distinct functions. Gene regulatory networks (GRNs) describe condition-specific interactions of transcription factors (TFs) regulating the expression of target genes, underpinning these specific functions. As efficient and validated methods to identify cell-type-specific GRNs from single-cell data in plants are lacking, limiting our understanding of the organization of specific cell types in both model species and crops, we developed MINI-EX (Motif-Informed Network Inference based on single-cell EXpression data), an integrative approach to infer cell-type-specific networks in plants. MINI-EX uses single-cell transcriptomic data to define expression-based networks and integrates TF motif information to filter the inferred regulons, resulting in networks with increased accuracy. Next, regulons are assigned to different cell types, leveraging cell-specific expression, and candidate regulators are prioritized using network centrality measures, functional annotations, and expression specificity. This embedded prioritization strategy offers a unique and efficient means to unravel signaling cascades in specific cell types controlling a biological process of interest. We demonstrate the stability of MINI-EX toward input data sets with low number of cells and its robustness toward missing data, and show that it infers state-of-the-art networks with a better performance compared with other related single-cell network tools. MINI-EX successfully identifies key regulators controlling root development in Arabidopsis and rice, leaf development in Arabidopsis, and ear development in maize, enhancing our understanding of cell-type-specific regulation and unraveling the roles of different regulators controlling the development of specific cell types in plants.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arabidopsis / Redes Reguladoras de Genes Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arabidopsis / Redes Reguladoras de Genes Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article