Your browser doesn't support javascript.
loading
Preferential subcortical collateral projections of pedunculopontine nucleus-targeting cortical pyramidal neurons revealed by brain-wide single fiber tracing.
Liu, Qiao-Qiong; Cheng, Yu-Xiao; Jing, Qi; Zhang, Ke-Ming; Ding, Lu-Feng; Fan, Xiao-Wei; Jia, Chun-Hui; Xu, Fang; Bi, Guo-Qiang; Lau, Pak-Ming.
Afiliação
  • Liu QQ; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China.
  • Cheng YX; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China.
  • Jing Q; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China.
  • Zhang KM; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China.
  • Ding LF; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
  • Fan XW; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
  • Jia CH; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China.
  • Xu F; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
  • Bi GQ; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China. gqbi@ustc.edu.cn.
  • Lau PM; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China. gqbi@ustc.edu.cn.
Mol Brain ; 15(1): 88, 2022 10 29.
Article em En | MEDLINE | ID: mdl-36309684
ABSTRACT
The pedunculopontine nucleus (PPN) is a heterogeneous midbrain structure involved in various brain functions, such as motor control, learning, reward, and sleep. Previous studies using conventional tracers have shown that the PPN receives extensive afferent inputs from various cortical areas. To examine how these cortical axons make collateral projections to other subcortical areas, we used a dual-viral injection strategy to sparsely label PPN-targeting cortical pyramidal neurons in CaMKIIα-Cre transgenic mice. Using a high-speed volumetric imaging with on-the-fly-scan and Readout (VISoR) technique, we visualized brain-wide axonal projections of individual PPN-targeting neurons from several cortical areas, including the prelimbic region (PL), anterior cingulate area (ACA) and secondary motor cortex (MOs). We found that each PPN-projecting neuron had a unique profile of collateralization, with some subcortical areas being preferential targets. In particular, PPN-projecting neurons from all three traced cortical areas exhibited common preferential collateralization to several nuclei, with most neurons targeting the striatum (STR), lateral hypothalamic area (LHA) and periaqueductal gray (PAG), and a substantial portion of neurons also targeting the zona incerta (ZI), median raphe nucleus (MRN) and substantia nigra pars reticulata (SNr). Meanwhile, very specific collateralization patterns were found for other nuclei, including the intermediate reticular nucleus (IRN), parvicellular reticular nucleus (PARN) and gigantocellular reticular nucleus (GRN), which receive collateral inputs almost exclusively from the MOs. These observations provide potential anatomical mechanisms for cortical neurons to coordinate the PPN with other subcortical areas in performing different physiological functions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Córtex Motor Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Córtex Motor Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article