Your browser doesn't support javascript.
loading
User-designed device with programmable release profile for localized treatment.
Myung, Noehyun; Jin, Seokha; Cho, Hyung Joon; Kang, Hyun-Wook.
Afiliação
  • Myung N; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, Republic of Korea.
  • Jin S; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, Republic of Korea.
  • Cho HJ; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, Republic of Korea. Electronic address: hjcho@unist.ac.kr.
  • Kang HW; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, Republic of Korea. Electronic address: hkang@unist.ac.kr.
J Control Release ; 352: 685-699, 2022 12.
Article em En | MEDLINE | ID: mdl-36328077
ABSTRACT
Three-dimensional printing enables precise and on-demand manufacture of customizable drug delivery systems to advance healthcare toward the goal of personalized medicine. However, major challenges remain in realizing personalized drug delivery that fits a patient-specific drug dosing schedule using local drug delivery systems. In this study, a user-designed device is developed as implantable therapeutics that can realize personalized drug release kinetics by programming the inner structural design on the microscale. The drug release kinetics required for various treatments, including dose-dense therapy and combination therapy, can be implemented by controlling the dosage and combination of drugs along with the rate, duration, initiation time, and time interval of drug release according to the device layer design. After implantation of the capsular device in mice, the in vitro-in vivo and pharmacokinetic evaluation of the device is performed, and the therapeutic effect of the developed device is achieved through the local release of doxorubicin. The developed user-designed device provides a novel platform for developing next-generation drug delivery systems for personalized and localized therapy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sistemas de Liberação de Medicamentos / Impressão Tridimensional Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sistemas de Liberação de Medicamentos / Impressão Tridimensional Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article